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Currently, the most common are disk driven vacuum devices, which largely eliminate the disadvantages 
mentioned above (sowing machine 3P3025AH Great Plains, Quivogne Prosem P, Kuhn Planter 3, Maestra 
Maschio). They have relatively small dimensions, which allows them to be placed directly above the coulter 
without the use of seed lines, which most significantly affect the redistribution of seed intervals. In addition, they 
have more efficient devices for removing unnecessary seeds from the sucking holes of the seed disc and, as a 
rule, provide a more even output seed flow. 

Among the disadvantages inherent in the most widespread vacuum seeding machines, the researchers 
noted an increase in uneven seed seed when increasing the number of seeding speed of the seed disk. 

The advantages of sowing machines with excessive air pressure compared with vacuum are the 
additional important air flow functions that improve the work of the machine, namely: removal of unnecessary 
seeds from the cells of seeding elements and pneumotransport of seeds from the seed disk to the bottom of the 
furrow with a certain redistribution of uniformity (sowing machine Tempo T of the company Väderstad, 
Aeromat A for Becker, Massey Ferguson for MF 555). 

The disadvantage inherent in all seed presses at the same time is the need to seal their seed bins to 
reduce air losses and improve the supply of seeds from the bunker to the working chamber, especially the 
Massey Ferguson MF 555 sowing machine. 
structural analysis, seed drills, precise hanging, pneumatic machine seeding, advantages, disadvantages 
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The Problem of Selection of the Optimal Strategy of 
Minimax Control by Objects  in Agricultural Production 
with Distributed Parameters 

 
he problem of minimax control synthesis for objects  in agricultural production  that are described by a 

two-dimensional heat conduction equation of parabolic type is solved. It is assumed that the control object 
functions under uncertainty conditions, and the perturbations acting on the object belong to some given 
hyperelipsoid. The problem of constructing a regulator in the state of an object for cases of point and mobile 
limit control is considered in accordance with the integral-quadratic quality criterion. With the help of numerical 
optimization methods, the problem of determining the optimal location of concentrated regulators at the 
boundary of a rectangular region and the problem of finding the optimal law of motion of a mobile limit 
regulator is solved. The problem is posed and solved in the minimax formulation when there is an optimal 
control on the state of the object functioning under uncertainty conditions so that the regulator minimizes the 
maximum control error from a set of possible values, taking into account the most unfavorable perturbations that  
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can act on the object or system. In this case, the perturbations of the object belong to a given limited region. The 
results of computational experiments illustrating the effectiveness of the constructed limiting concentrated and 
moving regulators are presented. The obtained results indicate that the controls found in the work are indeed 
optimal and ensure minimum errors (deviations from the given state) of the functioning of the system and energy 
costs for the implementation of control under given conditions and in the absence of any information on external 
action other than the region of permissible perturbations. 

In the work, for the first time, a minimax approach was used to control the objects described by the two-
dimensional parabolic type thermal conductivity equation; the theoretical positions of synthesis of minimax 
regulators for cases of lumped boundary (point) and moving regulators are considered; algorithmic software is 
developed that allows to simulate the dynamics of the constructed minimax-regulators and to investigate the 
corresponding transients. 
minimax control, regulators, distributed parameter systems, optimization, gradient projection method, 
point and mobile limit controls 
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Introduction. In connection with the widespread adoption of new advanced 

technologies related to the use of electronic, ion, laser and other radiation, in recent years 
intensive study of the possibilities of optimal control of distributed source systems by 
changing the location of point sources of radiation and the laws of motion of moving. 

Statement of the problem and analysis of recent researches. The determination of 
the problems of point and motion control, some methods of their solution are given in the 
works [1,2,3]. One of the most important and complex tasks is the choice of an optimal point 
and move control strategy for systems that operate under uncertainty. It is this problem that is 
devoted to this article, which solves the problem of choosing the optimal location of point 
regulators and finding the optimal law of motion (moving) of a moving source at the 
boundary of a rectangular region for the process of heat transfer occurring under incomplete 
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information. The theory of control moves towards the complexity of the phenomena studied, 
processes and the reduction of information about the control system, the object, its features, 
properties, characteristics, operating conditions, external influences. Taking into account all 
the above-mentioned, the chosen direction of research is perspective and has a high level of 
relevance. 

The purpose of the article is the practical application of the theory of synthesis of 
minimax regulators to the problems of controlling the choice of optimal arrangement of point 
regulators and the search for an optimal motion law in conditions of uncertainty of external 
perturbations acting on them in the domain of their admissibility. 

Presenting main material. Let the process of heat transfer in a homogeneous thin 
rectangular plate be described by a function ( , )x t , which is in the area (0, )TQ T , 
where 1 2 1 1 2 2( , ) :  0 ,  0x x x l x l , 1 2, 0l l , T , satisfies the equation 

            1
( , ) ( , ) ( , )x
x t a x t f x t
t

,   ( , ) Tx t Q ,                                   (1) 

but on the border TQ   additional conditions 

0( ,0) ( )x f x ,  x ;    
1

( , ) ( ( )) ( )
N

i i
i

x t x v t u t ,  ( , ) (0, )x t T .       (2) 

Here 
2 2

2 2
1 2

x x x
  two-dimensional Laplace operator;  

0a   coefficient of temperature conductivity;  
  border of rectangular area ;  
( )x y   Dirac's delta function;  

( )it v t   dimensional functions that determine the motion of boundary 
sources;  

2( ) (0, )iu t L T   control functions;  

0 2( ) ( )f x L , 1 2( , ) ( )Tf x t L Q  unknown functions belonging to the area 

      0 1 0 1, :  ; ( ),  0 1tS f f G f f t ,      (0, ]t T ,                   (3) 

where 

2 2
0 1 0 0 1 1

0

; ( ),  0 ( ) ( , )
t

G f f t F f x dx F f x dxd , 

nd 0F , 1F   positive constant values reflecting the contribution of noise 0f  and 1( )f t  in 
the final perturbation, acting on the system (1), (2). 

Under the solution of the boundary value problem (1), (2) we will understand such a 
function 2( , ) ( )Tx t L Q , which satisfies the following integral identity 

0 1
0 0

( , )( , ) ( , ) ( ) ( ,0) ( , ) ( , )
T T

x
x tx t a x t dxdt f x x dx f x t x t dxdt
t

 

1 0 ( )

,
( )

i

TN

i
i x v t

x t
a u t dt

n
         ,x t ,                                  (4) 
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where 
n

  derivative of the external normal n  to the border  of the area , 

3,1( , ) :  ( , ) ( ),  ( , ) 0,  ;  ( , ) 0,  ( , ) (0, )Tx t x t H Q x T x x t x t T , 
3,1( )TH Q   Sobolovsky space [4]. 

It can be shown [5] that the solution of equation (4) with given controls 
2( ) (0, )iu t L T  exists and is unique in space 2 ( )TL Q .The task of choosing the optimal 

strategy for minimax control [6, 8] will be to find vector functions 
* * * *

1 2( ) ( ), ( ),..., ( )
T

Nv t v t v t v t  and * * * *
1 2( ) ( ), ( ),..., ( )

T

Nu t u t u t u t  under conditions 

                  * *( , ) inf inf ( , )
v u

I u v I u v ,                                                (5) 

where 
2

2

10

( , ) sup ( ) ( , ) sup ( )
T t

T N

i i
S Si

I u v S x x T dx d u t dt ,                          (6) 

2( ) ( )S x L , 0id const , 1,2,...,i N , with a given control structure ( )iu t  in the form 
of a linear feedback  

                      ( ) ( , ) ( , )i iu t R x t x t dx .                                                (7) 

The solution of the formulated problem will be carried out in two stages: first we solve 
the problem of determining the optimal control *( )u t  under condition 

                        *( , ) inf ( , )
u

I u v I u v                                                      (8) 

for a fixed vector-function ( )v t , and then find it *( )v t , at which 

                      * * *( , ) inf ( , )
v

I u v I u v .                                                    (9) 

According to the results of [7,8], the following theorem is proved: optimal control 
*( )u t  of the optimization problem (1), (2), (6), (7) satisfying the necessary optimality 

conditions has the form 

*( ) ( , ) ( , )i iu t R x t x t dx ,    * 1 1( , ) ( ) ( , ) ( ( ), )i i iR x t ad t g x t h v t t ,             (10) 

where 

2 1 2

1
( ) 1 ( ( ), )

TN

k k
k t

t a d h v d , 

            ( )

1

( )( , )
( )( , )

i it T
i

i i

xg x t
s e

r xh x t
,    ( ) ( )i is S x x dx .                (11) 

In the ratio (11) 1 2( , )i i i   multiindex 
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1

1 2
2

1 2 2
1 1

1 2

1 2 2
1

1 2
, 1 2

2 1 11 2
2 2

2 1

2 1 1
2

2 1

( 1) sin , ,

sin , 0,
2( ) ( , )

( 1) sin , ,

sin , 0,

i

i i i
i

i i x x l
l l

i i x x
l l

r x r x x
i i xl l x l
l l

i i x x
l l

      1 2( , )x x x , 

where i , ( )i x  eigenvalues and corresponding orthonormalities in space 2 ( )L  
own functions of the boundary value problem (1), (2) having the form 

1 2

2 2 2
, 1 1 2 2( ) ( )i i i a i l i l , 

1 2

1 1 2 2
, 1 2

1 21 2

2( ) ( , ) sin sini i i
i x i xx x x
l ll l

. 

The value of the functional (6) for optimal control (10) is determined by the formula    

                          *

0 1 0

(0) 1 ( )( , )
(0) ( )

TW W tI u v dt
F F t

,                                         (12) 

where 

                                   2 ( )

1
( ) i t T

i
i

W t s e .                                                   (13) 

Let us now turn to the solution of the optimization problem (9), (12). Let's consider 
first a simpler case when ( )i iv t z , 1,2,...,i N , that is, we solve the problem of 
optimal location of point boundary controls (10). Let's introduce the designation 

1 2[ , ,..., ]T
Nz z z z , * *( ) ( , ) ( , )J z I u z I u v . Then the task under consideration will be to 

find the vector * * *
1 2[ , ,..., ]T

Nz z z z , at which 

                                    *( ) inf ( )
zz

J z J z                                                    (14) 

where 1 2 1 2:  [ , ,..., ] ,  ( , ) ,  1,2,..., ;  ,  T
z N i i i i jz z z z z z z z i N z z i j . 

Given that function ( )J z  is a continuously differentiated function of its arguments, to 
solve the optimization problem (14) we use the gradient projection method [9] 

               1 Pr ( )
z

k k k
k zz z J z ,     0,1,2,...,k                             (15) 

where 1 2Pr , ,...,
z

T
Nz y y y , Pri iy z   projection of point iz  on the 

border  of a rectangular area ;  

1 2, ,...,
Tk k k k

Nz z z z   approximate solution obtained on k-th iteration;  
0z   initial approximation; 
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k   step of descent, which is chosen from the condition of the monotonous decline of 
the function of purpose ( )J z  [9]; gradient ( )z J z  is determined by the formula 

1 2
( ) ( ), ( ),..., ( )

N

T

z z z zJ z J z J z J z , 

1 2, ,..., T
Nz z z z ,    1 2, ,  1,2,...,i i iz z z i N , 

2
2 2

0 1 0

(0) (0) ( ) ( )1( ) 2
(0) ( )n

T
n n

z
W W t tJ z a dt

F F t
, 

( )( )
1

1 1

1( ) ( ) ( )
i j t T

n n i j i n j n
i j i j

et d s s r z P z , 

where 1 2( ) ( ), ( )j n j n j nP z P z P z , 

1 2

3

2
1 2

, 1 2 3 ,3/2
1 2

3 , 3

0, 0,  ,
2( ) , cos 1, 0,
( )

( 1) , ,k

kn kn k
k k k kn

j n j j n n k n
k j

k n k

z z l
j zj jP z P z z z

l l l
z l

    1,2k . 

 
The condition of the stop was taken in the form 1( ) ( )k kJ z J z , where 0   

the accuracy of the solution is given. 
This algorithm was programmed in the algorithmic language Fortran 90 with the 

following initial data: 1 2.0l , 2 1.0l , 2.0T , 0 0.25F , 1 2.0F , 1.0id , 
1,2,...,i N , ( ) 1.0S x , 0.001, 0 0.8 , number of regulators 5N , for the value of 

the coefficient of thermal conductivity a  0.4 was taken, which corresponds to the coefficient 
of thermal conductivity of the copper plate. The dimension of all quantities is given in the 
system [meter, time, deg. Co, kcal.]. The infinite series (11), (13) were broken off by the finite 
sum of the three first members. For numerical simulation of optimal controls *( )iu t  it was 
assumed that perturbation 0( )f x  and 1( , )f x t  is equal 

1 2
0 1 2

1 2

( , ) 2sin sinx xf x x
l l

,        1 2
1 1 2

1 2

( , , ) sin cosx xf x x t t
l l

. 

We note that these perturbations are permissible, because 
3 3

0 1 0 1 2 1 1 2
1 1, ( ),0 0.5 1

12 3
G f f t F l l F l l t t ,   0,0.2t  

and as a result, 0 ( )f x  and 1( , )f x t  belong to the area (3). 

Table 1 gives the initial location 0 0 0 0
1 2, ,...,

T
Nz z z z  point boundary regulators. 

Function value ( )J z  at such an arrangement of controls equals 0( ) 0.975632J z . Optimal 

arrangement of regulators * * *
1 2, ,...,

T

Nz z z z , obtained by the algorithm (15), is given in 

the table 2  and *( ) 0.571874J z . 
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                                                Table 1.                               Table 2. 
k  0

1kz  0
2kz  k  1kz  2kz

1 2.0 0.0  1 1.349 0.0 
2 1.0 0.0  2 1.0 0.0 
3 0.0 0.0  3 0.651 0.0 
4 0.0 0.5  4 0.0 0.5 
5 0.0 1.0  5 0.651 1.0 

 
Figure 1 shows graphs of optimal point controls (10) that are optimally located on the 

boundary  of the area    * ,  1,2,...,iz i N . 

 
Figure 1 – Schedule of  optimal boundary point controls 

 
We now turn to the optimization problem (9), (12). Let's lick for simplicity one 

( 1)N  a moving source and let the perturbation 1( , )f x t  in the right side of equation (1) 
will be absent. Let's denote 1( ) ( )u t u t , 1( ) ( )v t v t , 1d d , *( ) ( , )J v I u v . Then the task 
of minimizing the functional 

                           1
0( ) (0)( (0))J v W F                                               (16) 

is equivalent to the next optimization problem 

( )0
(0, )

( ) ( ( ), ) sup
T

t v t
t T

L h v d , 

where ( )t , ( , )h x t , ( )W t   functions determined by the formulas (11), (13). 
To solve the last problem, the projection method of the gradient of the species was 

also used  
1( ) Pr ( ) [ ( ); ]k k k

kv t v t L v t ,    (0, )t T ,        0,1,2,...,k           (17) 

 where 0 ( )v t   initial approximation;  
( )kv t   Approximate solution obtained at k-th step;  

k   step of descent to the minimum point;  
[ ( ); ]L v t   graceful Frechet functional ( )L v  which is calculated by the formula 
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[ ( ); ] 2 ( ( ), ) ( ( ), )L v t h t t t t ,      ( )

1
( , ) ( )i t T

i i
i

x t s e P x . 

The algorithm stops when is fulfilled the condition 1( ) ( )k kL v L v , where 0  

 the accuracy of the solution is given. 
Numerical implementation of the algorithm (17) was carried out with the above earlier 

data. Below are the results of computational calculations. In table 3 the initial law of motion is 
given 0 0 0

1 2( ) ( ), ( )v t v t v t  for a moving boundary source. Optimal motion law 
* * *

1 2( ) ( ), ( )v t v t v t  of the moving controller (10), obtained by the algorithm (17), is given 

in table 4. 
                                                 Table 3.                                     Table 4. 

t  0
1 ( )v t  0

2 ( )v t  t  *
1 ( )v t  *

2 ( )v t  
0.0 0.0 0.0  0.0 0.010 0.0 
0.02 0.667 0.0  0.02 0.765 0.0 
0.04 1.333 0.0  0.04 1.230 0.0 
0.06 2.0 0.0  0.06 1.990 0.0 
0.08 2.0 0.5  0.08 2.0 0.5 
0.10 2.0 1.0  0.10 1.990 1.0 
0.12 1.333 1.0  0.12 1.285 1.0 
0.14 0.667 1.0  0.14 0.664 1.0 
0.16 0.0 1.0  0.16 0.010 1.0 
0.18 0.0 0.5  0.18 0.0 0.5 

 
The value of the functional (16) thus decreased from 0( ) 0.639538J z  to 

*( ) 0.438419J z . In fig. 2 shows an optimal control (10), the movement of which is 
carried out in the optimal trajectory, shown in the table 4. The optimal trajectory consists of 
four parts, each of which resembles a parabola and defines (describes) the motion of the 
regulator along the corresponding boundary of the rectangular area. 

 
Figure 2 – Schedule of Optimum Limit Moving Control 
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The computational experiments also showed that the efficiency of point and moving 
boundary controls increases with a decrease in the coefficient of temperature conductivity, 
that is, with the decrease of this coefficient the value of the functional (8) after determining 
the optimal control strategy decreased by a larger value compared with the value of the same 
functional with a given initial control strategy. 

Conclusions. In this paper the solution of the problem of finding the optimal 
placement strategy for point boundary regulators and the problem of determining the optimal 
trajectory of moving a regulator along the boundary of the region in which the distributed 
control object functions is achieved. The problem is solved and solved in a minimal-scale 
setting, that is, an optimal controller is found for the state of the object, which functions in 
conditions of uncertainty, and the perturbation of the object belongs to a given bounded 
domain. The results of computational experiments are presented, which illustrate the 
efficiency of constructed lumped boundary point and moving regulators. The obtained results 
indicate that the control outputs are actually optimal and provide a minimum of errors 
(deviations from the given state) of the system's operation and energy costs for the control of 
the given conditions and the absence of any information on external influences, in addition to 
the area of permissible perturbations. Satisfactory performance indicators are observed even 
in the event of disturbance beyond the boundaries of a given area. 
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