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Optimal control of nonlinear stationary systems at
infinite control time

The article presents a solution to the problem of control synthesis for dynamical systems described by
linear differential equations that function in accordance with the integral-quadratic quality criterion under
uncertainty. External perturbations, errors and initial conditions belong to a certain set of uncertainties.
Therefore, the problem of finding the optimal control in the form of feedback on the output of the object is
presented in the form of a minimum problem of optimal control under uncertainty. The problem of finding the
optimal control and initial state, which maximizes the quality criterion, is considered in the framework of the
optimization problem, which is solved by the method of Lagrange multipliers after the introduction of the
auxiliary scalar function - Hamiltonian. The case of a stationary system on an infinite period of time is
considered. The formulas that can be used for calculations are given for the first and second variations.

It is proposed to solve the problem of control search in two stages: search of intermediate solution at
fixed values of control and error vectors and subsequent search of final optimal control. The solution of -optimal
control for infinite time taking into account the signal from the compensator output is also considered, as well as
the solution of the corresponding matrix algebraic equations of Ricatti type.
minimax control, robustness, systems with uncertainties, optimization, matrix form

Formulation of the problem. Initially, the main results of research on linear
automatic control systems were the concept of stability and its criteria based on characteristic
polynomials. With the development of radio engineering and electronic automatic systems,
frequency research methods became the main ones, which later spread to pulsed, discrete and
nonlinear systems in connection with the development of computer technology. The progress
of cosmonautics has led to the study of automatic systems in the space of states, the idea of
optimizing control systems with the simultaneous optimization of their quality indicators.

Subsequent progress has made it possible to combine frequencies with methods of
state space research, which, in addition to optimization, has made it possible to solve
problems with any uncertainties - robust control. In this case, the uncertainty of the frequency

response of control objects is limited in the H~ -norm and can be specified in both parametric
and matrix form when describing the state in space [1].

Analysis of recent and publication. The theory of robust control [4] has intrigued
scientists since the 90s, although some fundamental ideas of robustness (for example, the
allocation of areas of stability in the parameter space) come from Vyshnegradsky. The first
results in this area concerned the analysis of systems with uncertainties — it was possible to
construct robust analogs of the main criteria of stability of linear systems. Serious results were
obtained in robust synthesis (design of regulators for robust systems).
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The practical value of the use of robust control is due to the fact that synthesized by
the criteria of stability, the optimal control system may be less sensitive to changes in
parameters or greater. In the first case, talk about the roughness of the system or its
robustness, in the second - the system is virtually inoperable, because at least the deviation of
the parameters (their uncertainty) leads to a loss of stability [5]. Thus, the formulation of the
problem of robust control is associated with the requirement to maintain the efficiency of the
system in the presence of uncertainties in its description.

There are three types of uncertainties: parametric, when the parameters of the object
are inaccurately known; structural, when the exact structure of the object is not known; mixed
when both parameters and structure are incorrectly set.

The system will be stable robust if, according to the root criterion of stability, all the
roots of its characteristic equation lie in the left complex root half-plane.

In the theory of robust control, the concept of in H, and H’ norm stability is used.

For one-dimensional systems, the H_ norm is the maximum of the modulus of the frequency

transfer function (amplitude-phase characteristic) when the frequency changes from zero to
infinity. For example, the oscillation index is the H_ norm of a transfer function that relates a

controlled variable to a setpoint [6].
The use of the H_ norm allowed us to use known methods of the theory of functions

of a complex variable (Nehari's theorem, Nevanlin-Peak interpolation) to construct an optimal
control that provides a minimum of this norm. Later, a construction method was proposed
H_ - suboptimal control, the so-called 2-Riccati approach, which develops the results

obtained in the development of optimal stochastic systems, in the case where external
perturbations and interferences are unknown damping functions with unknown statistical
characteristics, or B approach [7,8].

Statement of the objective. For uncertainty conditions, it is fruitful to use a minimax
approach, when there is an optimal regulator for the state of the object, which operates in
conditions of uncertainty so that it minimizes the maximum error (deviation of the current
state of the system from the set or desired) from many possible values. perturbations that may
affect an object or system. However, the way to solve this problem is not always obvious [2],
and its search requires additional research [9].

Consider a dynamic object described by the following system of differential equations
[3].

dx(t)

dt
x(t,) = Fyx,,

= A(O)x(t)+ B(u()+ F,(Hw(t),  t,<t<T, (1)

where x(f) € R"™ — state vector, u(t) € R™ — control vector, w(t) e R™ — unknown
vector of extremal perturbations acting on the object, x, € R™ — unknown vector of initial

conditios, A(f)eR™™, B(t)e R™™, F (t)e R™™, F,e R"™™ — given matrices of
corresponding dimensions.

Consider and choose an integral-quadratic criterion for the quality of the object in the

form
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T
I(u)= I(xT(t)Gx (O)x(t)+u’ ()G, (t)u(t))dt +x” (TG x(T), (2)
fo
where y(t)e R" — the result of observation, v(#)€ R™ — unknown errors

(obstacles) of measurements, C(¢) € R, F,(t)e€ R™™™ —known matrices.

Consider and choose an integral-quadratic criterion for the quality of the object in the

form

T
1) = [ (x" ()G ()x()) +u" ()G, (u(®))dt + x (T)G ,x(T). 3)
l
where G () e R"™™, G, (t)e R"™, G, € ™™ — given symmetric weight
matrices, and it is assumed that they satisfy the conditions G_(¢)= G (t)>0,
G,()=G(1)>0,G, =Gy 20.

Here " T'" — means the operation of transposing the matrix, G = G’ — means that the
matrix G is symmetric, G > 0 (G > 0) — the condition of positive (non-negative) certainty
of the matrix, i.e. the matrix G has positive or non-negative eigenvalues.

Regarding the unknown vector of external perturbations w(f), the vector of

measurement errors V(#) and the vector of initial conditions x, it is assumed that they belong

to the next set of permissible perturbations (unsertainties).

Q. ={&: &=w®),v(1),x,), w(t) € Ly(t,T), v(t) € Ly (1, T), x, € R"; [ EIF <1}, (4)
where the norm || &|| of the vector-valued function & is determined by the following

expression
T

117 = [(W (OR, (W) +vT (OR (VD)) dt+(x, = %) Ry (%= %,)> (5
)
in whichR (£)e R™™™, R, (t)eR™™, R,€R™™ — given weight matrices,
andR (t)=RI(t)>0, R (t)=R/(t)>0, R,=R] >0, X, € R™ — known vector, in the
vicinity of which is an unknown vector of the initial conditionx, [4].
In addition, in (4) through L,(¢#,,7) the denoted set of vector-integrated square
functions, ie

L(1,,T) = {f(t) eR": [ f1(0) f(0yde= I ()|} di < oo}-

Main material. Consider the case of a stationary system (1) over an infinite period of

time. H”™ — optimal control of linear stationary systems at infinite control time.
Consider a stationary system:
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dx(t)
——==Ax(t)+ Bu(t)+ F w(t), t,<t<oo,
x(t,) = Fyx,,
in the equation of observation
y(0) = Cx(t)+ Fv(1), (7
and quality criteria
I(u) = j (x" ()G x(0)+u" ()G, u(t))dt, (8)

)

Regarding the unknown vector of external perturbationsw(¢), the vector of
measurement errors V(#)and the vector of initial conditions; , it is assumed that they belong
to the next set of permissible perturbations (uncertainties)

Q, ={&: &=W(0),v(1),X), W(t) € Ly (t5,0), v(t) € L (1, %), X, € R™; || <1}, (9)
where the norm mopma || £||  of the vector-valued function & is determined by the
following expression

o0

[E1P= [ (W (ORw(O)+" (OR())de+(x, = %)) Ry (%= %) (10)
)
Then H™ - the optimal solution to the problem of minimax control
inf sup I(u) =y, > (11)
U feQ,
presentable in the form
u(t)==G,'B"Qx, (1), (12)

where x,(f) — compensator output

dx (t)
—e = Ax, (1) +B.y(1), (13)

xc (tO) = xg b
in which it is marked

4,=A-BG,'B'Q+y F,R,FI0-(E-y?PQ) PC'RC, (14)
_ -2 -1 T

B,=(E-y?PQ) PC'R, as)

x = (B~ RRF M) B, R=(F)RE". (16)

Matrices P=P" >0 i Q=0" >0 are solutions of the following matrix algebraic
equations of the Ricatti type
AP+PA" - P(C"RC-y7G,)P+F,R,F] =0, (17)

-A4"Q-04+Q(BG,'B" -y *F,R,'F[)0-G, =0, (18)

in which the parameter ;/2 must satisfy the condition

E-y70P>0. (19)
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The minimum value y_.  of the parameter ;/2 , under which the condition is met (19),

corresponds to optimal control.
The worst (most unfavorable) perturbations are given by formulas

-1
w(t) =y R)FOx. (1), v()=0, x,=(E-y7 R,'FJOF,) %,. (20)
Estimation of the state vector X(f) can be found by the formula

#(0)=(E-y7PQ)x,(1). @1)
Conclusions. Thus, the purpose of the article, declared at the beginning of the work, is
achieved, the proposed solution of the problem of finding the optimal control as output
feedback, which minimizes the integral-quadratic criterion of operation under uncertainty
under the most adverse perturbations. The results of the research are presented in the form of
practical formulas, according to which the corresponding calculations are allowed when
modeling control processes in the considered linear dynamic non-stationary object with
uncertainties. The theory of automatic control moves in the direction of complicating the
studied phenomena, processes and reducing information about the control system, object, its
features, properties, characteristics, operating conditions, uncertainties and external
influences. Given all the above, the chosen area of research is promising and has a high level
of relevance.
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OnTuMajibHe KepyBaHHSA HeJTiHIHHMMH CTalliOHADHUMH CHCTEMAaMH HA HECKIHYEeHOMY
yaci peryJilOBaHHs

B crarti HaBemeHe BUPINICHHS MPOOJNIEMH CHHTE3y KEpyBaHHA IS AWHAMIYHHUX CHCTEM, SKi
ONMHCYIOTHCS JMiHIKHUMH AU(EepeHIIHHIMA PIBHAHHAMHY, M0 (YHKLIIOHYIOTh y BIAIOBITHOCTI 3 iHTErpaibHO-
KBaJPaTUIHUM KPUTEPIEM SIKOCTI B yMOBaX HEBH3HAYECHOCTI.

3oBHIMAI 30ypeHHS, MOXHOKM Ta IMOYaTKOBI YMOBH MpH IIbOMY Hale)XaTh IE€BHIA MHOXHUHI
HeBH3HaueHocTed. Tomy mpoOiema MOIIYKYy ONTUMAajbHOTO KEPYBAaHHS Yy BUIVIAJI 3BOPOTHOrO 3B’SI3KY 3a
BUXOZOM OO0’€KTa  MpPEICTaBicHa Yy BHUIVIAAI MIHIMAKCHOI 3aJadi ONTUMAIbHOTO KEpyBaHHS 3a yMOB
HEBM3HAYEHOCTEH. 3aBJaHHs MOIIYKY ONTHUMAJIbHOIO KEPyBaHHsS 1 MOYAaTKOBOTO CTaHY, SIKI MaKCHUMIi3YIOTb
KpHTEpill SKOCTi, pO3MIITHYTO B paMKaxX ONTHUMi3aliiiHOI 3aja4i, Ky pO3B’s3aHO METO/I0M MHOXKHHKIB Jlarpamka
TTiCIIsl BBEICHHS JOIOMDKHOI CKaIsApHOI (yHKIIT — raMinbroHiana. Po3rIsiHyTO BUIIaJJOK CTalliOHAPHOI CUCTEMH
Ha HECKIHUEHHOMY BIiATHMHKY dacy. IlpuBeneni juig mepmmx Ta Apyrux Bapiaumid Qopmynu, siki MOXYTb
BHUKOPHCTOBYBATHCS /ISl PO3PAXYHKIB.

3anponoHOBaHO 3a7ady MOIIYKY KePyBaHHS PO3B’S3YBaTH B JIBa €TAlH: IMOIIYK MPOMIKHOTO PO3B’SI3KY
npu QiKCOBaHMX 3HAYCHHAX BEKTOPIB KEPYBAHHS Ta MOXUOKH 1 HACTYITHUAHN MOIIYK OCTATOYHOTO ONTUMAIFHOTO

0 . .
KepyBaHHS. PO3ryisiHyTe TakoX po3B’s3aHHs /4  -ONTUMaIbHOIO KepyBaHHS Ha HECKiHYEHOMY daci 3
BpaxyBaHHSIM CUTHAITy 3 BUXO/y KOMIIEHCATOPA, @ TAKOXK — PO3B’A3aHH BiIIOBIIHUX MaTPUYHUX aJreOpaiuHux
piBHSAHB TUMY PikaTTi.
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