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Energy-efficient Hydraulic Actuator of the Dumper Carcass Lift Mechanism

The goal of researching is finding alternative constructions of hydraulic actuator of the carcass lifting
device, which are working without using internal combustion engine energy and, consequently, guarantee energy
saving and economical effect of technological car using.

In the article it was offered the construction of original hydraulic actuator of the carcass lifting device.
The feature of such hydraulic system is using hydraulic accumulator of high pressure, plunger pumps, control
systems, herewith gear pump and its drive from car engine, which are specific for serial lifting mechanism, in the
offered scheme are not present. As a source of energy, which is needed to lift the carcass, was offered not to use
the internal combustion engine, but hydraulic accumulator with recharging from chattering of the car sprung
mass.

The feature of this hydrosystem is the use of a high pressure accumulator, plunger pumps, control
system, with the gear pump and its drive from the engine of the car, typical for the serial lift mechanism, in the
proposed scheme are absent. As a source of energy necessary for lifting the body, it is proposed not to use an
internal combustion engine, as in serial hydraulic drives, and a hydraulic accumulator with the energy of the
working fluid accumulated from the oscillations of the submerged car's masses.

Was counted the economy, which can be earned by the reducing of the fuel uses, during realization of
unloading operations of one car per year.
plunger pump, working fluid, hydraulic accumulator
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Synthesis of Modal Control of Multidimensional Linear
Systems in Agricultural Production Based on Linear
Matrix Inequalities

The paper gives a solution to the problem of constructing modal regulators for linear multidimensional
systemsin agricultural productionthat provide D-stability (asymptotic stability) of the control object. The control
is represented as regulators providing feedback on the output of the control object, and uses the full and low
order observers of Luenberger. To calculate the matrices of the regulators, we use the technique of linear matrix
inequalities and generalize the Lyapunov stability concept (D - stability). The theorems are given which give
necessary and sufficient conditions for D - stability of the controlled system.
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The constructive solution of the synthesis problem D - stabilizing (modal) regulators according to the
measured output of the control object, based on the construction of observers of the state of the object of the
complete and reduced order, is given. The solution is based on the use of the theory of linear matrix inequalities
(LMI). For numerical simulation of the resulting modal regulators you can use effective methods of convex
optimization and corresponding software that is included in a number of application packages, in particular, in
the MatLab system.In this paper we describe methods for solving not only the direct problem of modal control,
when the choice of parameters of a regulator is ensured by the coincidence of the roots of the characteristic
equation of a closed system with a predefined set of complex numbers located on the left side of the complex
plane, but also other problems of modal control, in which the requirement the exact placement of the roots in the
left integrated half-plane is not superimposed, but only their membership in certain specified areas is required.
Such areas, described by a system of linear matrix inequalities (LMI), are called LMI domains.
dynamical system, modal control, regulators, D - stability, Luenberger observers, linear matrix
inequalities, kroneker product of matrices
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Cunres MOJAJBHOI0 YIIpaBJICHHUA MHOIOMEPHBLIMU JUHEHHbIMH CHCTEMAMH B

CeJIbCKOX0351iiCTBEHHOM MMPOU3BO/JCTBE HA OCHOBE JMHEHHBIX MAaTPUYIHBIX HEPABCHCTB

Jaetcs pemenne 3a1auu MOCTPOCHMSI MOJIAJIBHBIX PETYIIATOPOB Ul JIMHEHHBIX MHOTOMEPHBIX CHCTEM
B CEJIBbCKOXO3SIICTBEHHOM IPOU3BOACTBE, oObecmeunBarommx D-  yCTOHYMBOCTH  (ACHMIITOTHYECKYIO
YCTOWYHBOCTD) OOBEKTA YIPABICHUs. YIPABICHHE IPEACTABICHO B BHIE PErYIITOPOB, OOCCIEUMBAIOLINX
00paTHYI0 CBA3b IO BBIXOAY OOBEKTa YIPABICHHSA, M HCIONB3yeT HalOmromatenu JlyenOeprepa MmOmHOTO U
HOHIKEHHOTO Mopsika. [ BBIYMCICHNST MAaTPHILL PETYIISITOPOB UCTIONIB3YETCSl TEXHUKA JTMHEHHBIX MATPUYHBIX
HEPaBEHCTB M 0000IIeHHe TTOHATHS ycToiunBocTH 1o JIstmyHoBy (D - ycToitunBocTs). [IpuBeneHHbIE TEOPEMBI
JIaf0T HeOOXOIMMBbIE U JOCTATOYHBIE YCIIoBUs D - ycTOWYMBOCTH yIIpaBiisieMOH CUCTEMBI.

B pabore ngaeTcss KOHCTPYKTHBHOE pelICHHE 3a7avd cuHTe3a D - crabumu3upyomux (MOAanbHbIX)
PEryJsiTOpOB 1O M3MEPSIEMbIM BBIXOJIOM OOBEKTa YIIPABJICHHS, OCHOBAHHOTO Ha MOCTPOCHUH HaOJronaTesiei
COCTOSIHMSI OOBEKTa OTPE/ICIIEHHOT0 MOpsi/IKa. Penenne moay4eHo Ha OCHOBE HCIIOJIb30BAHHS TEOPUH JIMHEWHBIX
MarpuuHbiXx HepaBeHCTB (LMI). [lnsi 4MCICHHOrO MOJCIUPOBAHUS TOMYYCHHBIX MOAAIBHBIX PEryJsTOPOB
MOJKHO HCIIOIb30BaTh METOJbI BBITYKJIONW ONTHMH3AIMH M COOTBETCTBYIONIEE IPOTPAMMHOE OOECIICUCHHE,
KOTOPOE BXOJHUT B PsifI IIAKETOB MPHUKJIAIHBIX IIPOrPaMM, B 4aCTHOCTH, B cuctemy MatLab.

OmnucaHbl METOABI PEIICHHS HE TOJIBKO NMPSAMOW 3afadd MOJAIBHOTO YIPABICHHUS, KOTZa BBIOOPOM
NapaMeTpoB peryisitopa OOECIeYrBaeTCsl COBIAJICHUE KOPHEH XapaKTepHUCTHUECKOTO YPaBHEHHUSI 3aMKHYTOI
CUCTEMBI C NPEABAPUTCIBHO 3alaHHBIM Ha60pOM KOMINJICKCHBIX YHCEJI, PACIIOJIOKCHHLBIX B JICBOM 4YacTu
KOMIIJIEKCHOM IJIOCKOCTH, HO U APYruxX 3aja4 MOAAJIbHOI'O PEryjiupoBaHHs, B KOTOPLIX Tpe6OBaHI/Ie TOYHOI'O
pa3MelieHusi KOpHEeH B JIeBOM KOMIUICKCHOM ITOJIYIUIOCKOCTH YK€ HE HaKJIaJbIBAaeTCs, a Hy)KHa TOJIBKO X
MIPUHAJUICKHOCTh K HEKOTOPHIM 3a/laHHBIM 00JIaCTSM, OINKMCHIBAEMBIM CHCTEMOH JIMHEWHBIX MaTpUYHBIX
HEpaBeHCTB U Ha3biBaeMbIX LMI- obmacTsamu.

AWHAMHUYECKasi CUCTeMa, MoOJaJIbHOe YINpaBJjieHHe, peryasaropbl, D - ycroiiumBocTh, HabJI0AaTE N
JlyenOeprepa, inHeiiHble MATPUYHbIE HEPABEHCTBA, KPOHEKEPOBO MPOM3BeAeHNEe MATPHIT

Introduction. Often, in control tasks from the set of stabilization controls, it is
necessary to select a subset, which provides for the system additional properties. Such
property may be, for example, the location of the roots of the characteristic polynomial of a
closed system in a given region of the complex plane.Control having such additional
properties is called modal control, and the regulator that provides it is considered modal.
Modal control relates to the root methods of linear ACS synthesis, in which, based on the
desirable indicators of the quality of control, the desired characteristic polynomial is
constructed, and hence the location of the roots of the characteristic equation is determined.
Characteristic values of the roots of Latin are called modes, hence the name of the regulator
and control - modal.
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Formulation of the problem. The following statement of the problem is possible: the
choice of control parameters provides for the exact coincidence of the roots of the
characteristic equation of a closed system with a predefined set of complex numbers located
on the left side (condition of stability) of the complex plane. Such a task is sometimes called
the direct task of modal control. In this paper, we describe the following methods for solving
other problems of modal regulation, in which the requirement of the exact placement of the
roots in the left integrated half-plane is not superimposed, but only their membership in a
given domain is required.As noted above, the task of modal control is related to the
construction of a regulator, in which the poles of the closed system are located at given points
or given areas of the complex plane. The values of such characteristics of a closed system as
the transition time, damping, the velocity of transient processes in the regulator, and others
are determined by the arrangement of the eigenvalues of the matrix of the closed system in
certain areas of the complex plane.

The purpose of the article is to consider the problem of modal control in such areas,
which can be described by a system of linear matrix inequalities - these areas will later be
called LMI-domains [1,3,4,5]. It can be shown that these areas include vertical and horizontal
bands, circles, conical sectors, as well as sections of these areas.

Presenting main material. One of the effective methods for solving problems of
modalation control synthesis is connected with the use of Lyapunov quadratic functions and
the technique of linear matrix inequalities.

The general approach to the modal control synthesis is based on the use of LMI. It
turns out that the domains of a certain type on the complex plane in which it is necessary to
place the eigenvalues of a matrix of a closed linear system can be described by linear matrix
inequalities, that is, as LMI-regions, first recording the necessary inequalities with respect to
the variables, and then executing their replacement on some matrices by a special substitution.

In the general case, consider the formal procedure for obtaining linear matrix
inequalities that determine the criteria for placing all eigenvalues of the matrix of the control
object in the required LMI domain. Note that for numerical solution of the obtained linear
matrix inequalities, existing effective algorithms that are implemented in some mathematical
packages, in particular MatLab [1.8], can be used.

In the general case, consider the formal procedure for obtaining linear matrix
inequalities that determine the criteria for placing all eigenvalues of the matrix of the control
object in the required LMI domain. Note that for numerical solution of the obtained linear
matrix inequalities, existing effective algorithms that are implemented in some mathematical
packages, in particular MatLab [1.8], can be used.

Let's introduce the concept of LMI-area. Let D be some area of the left integrated half-
plane. A dynamical system will be called D-stable if all its poles, that is, all the eigenvalues of
the matrix, lie in the domain D. In this case, the matrix A will also be called D-stable. In a
particular case, when D coincides with the entire left-most complex half-plane, D-stability is
reduced to asymptotic stability, which is characterized by the Lyapunov inequality, which is a
linear matrix inequality. Namely, the matrix A is asymptotically stable if and only if there
exists a symmetric matrix X satisfying the inequalities

AX + XAT <0, X >0.

Define a class of domains that are characterized in terms of linear matrix inequalities.
To do this, we introduce the matrix functions of the complex variable into consideration
2eC (C- a set of complex numbers) that take values in the space of self-connected
Hermitian (m x m ) — matrices (Hermit Charles, 1822 - 1901)

fo(z)=P+2G+7G", 1)
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where P=P'R™™ and G e R™™ — given matrices (R™" — set of real matrices of
dimension mxm), Z — combined complex number.
Domain

D={zeC: f,(z) <0} (2)

called LMI-domain generated by the function fp(z), which is often called the characteristic
function of the domain D.

From this definition it follows that the LMI-domain is a subset of a complex plane that
Is represented by a linear matrix inequality with respect to variables x = Re(z) and y =1Im(z).
Consequently, the LMI-domain is convex. Also, because of any ze D takes place
f,(Z) = f5(z) <0, then the LMI-domain is symmetric with respect to the actual axis.

The most important property of LMI domains is that they are completely determined
in terms of linear matrix inequalities with respect to some symmetric positively defined
matrix. In order to get these inequalities, we will match the function fp(z) the next (mxm) —
block matrix

M(AX)=P®X +G®(AX)+G" ®(XA"), 3)

where "®" —the operation of the kroneker product of matrices (Kronecker Leopold,
1823 - 1872).

Recall that the kronecker product matrix is called block matrix, formed by multiplying
each element a; of the matrix A on the matrix B [2]. Given this, note that blocks of the matrix

M (A, X) can be written in the form
T ..
Mij(A1x):pijx+giij +0; XA, ,]=12,.,m, (4)

where p;, g; —the elements of the matrices P and G, respectively.

To construct modal regulators that provide the stability of control objects, it is
important to prove Theorem 1 of stability [3,5,7].
Let D-LMI-domain. Then the matrix A is D — stable if and only if there is a matrix

X = X T which satisfies the linear matrix inequalities
M(A X)<0, X>0. (5)

If the matrix (5) is multiplied left and right on the matrix E®Y , where E — unit

matrix, Y = X", then taking into account the properties of the operation of the kronecker
product after a series of transformations we obtain the criterion D — stability of the matrix A

L(AY)=P®Y +G®(YA) +G' ® (ATY)<0, Y=Y">0. (6)

On the basis of Theorem 1 one can propose the following algorithm for constructing
LMI - domains that determine the D-stability criterion of the system x(t) = Ax(t):

1. A characteristic function fp(z) of the form (1) is constructed so that the set D
generated by it has the desired form.

2. Using substitution (1,z,7) <> (X, AX, XA") the function fp(z) of the block matrix
M (A, X) of the form (3) are brought into conformity.

3. A system of matrix inequalities of the form (5) (or (6)) is formed and is solved
with respect to the matrix X (or Y).

72



ISSN 2414-3820 KoHcTpyroBaHHs1, BAPOOHHMIITBO Ta EKCILTyaTallis CLUTbChKorocroaapchkux Marms, 2018, purr. 48

4. In accordance with the above theorem 1 we conclude that D is the stability of a
multidimensional linear system x(t) = Ax(t).

Note one important property of the LMI - domains: LMI - the domains are locked in
relation to the intersection operation, that is, the intersection of the LMI - the domains will
also be LMI- domain.

Consider some important examples of constructing an LMI domain.

As a first example, consider the set D, ={zeC: Re(z)<-u} (Fig.1.a) which

corresponds to asymptotically stable systems with a degree of stability no less , . Obviously,
this domain generates a function f, (z)=z+7+2x, and according to Theorem 1, the

matrix A is asymptotically stable with a degree of stability not less x if and only if there is a
matrix X = X", which satisfies the linear matrix inequalities of the form (5)

AX + XAT +2uX <0, X >0.

Another example of the LMI domain is D, ={zeC: |z+ql<r} - inside the circle
with a radiusr centered at the point (—q,0) (Fig.1.b). For thisdomain

foz(z):(_r q+zj<o’

q+zZ -—r

and the linear matrix inequalities (5) characterizing this region take the form

—rX X + AX
N P
gX + XA rx

Im(z) Im(z)

@55@ @
T Re(z) 1) Re(2)

(a) (6)
- Im(2)
—uz—ﬂl Re(z)
T (e)
Im(z) Im(z2)
Re(z) (p Re(z)
(2) (0)

Figure 1 — Examples of LMIs are domains of stability
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Vertical strip D, ={zeC: — u, < Re(z) < -z} (Fig.1.c) matches the function

Z2+7)+2 0
fDS(Z) _ ( )+ 2 A
0 —(z2+7)-2u,
and, respectively, linear matrix inequalities
T
AX + XA + 214, X 0 <0, X>0.
0 —AX = XAT =24, X

Horizontal half-strip D, ={zeC: Re(z) <0, —v <Imz<v} (Fig.1.d) corresponds
to the characteristic function
=2v -7
fo, (2) = _
—(z-7) -2v
and linear matrix inequalities

.
—2VX AX—XA <0’ X>O
—AX + XA" —2v X

Finally, to the conic sector Ds = {z € C: Re(z)tgp<I/Imzl}(Fig.1.e) corresponds the
function

( (z+7)sing (z—?)cowj
fD (Z): - =\ -
° —(z-7)cosep (z+7Z)sing

and linear matrix inequalities
(AX + XAT)singp  (AX — XA")cosg
—(AX = XAT)cosp (AX + XAT)sing

Apply now to the apparatus for synthesizing modal control of the linear system for a
given LMI- domain. The classical approach to the synthesis of linear feedback (regulators) in
the state space is associated with the canonical representation of the controlled object and the
construction of a modal control (controller) that provides the given eigenvalues (mods) of the
matrix of a closed system. Then the construction of the modal control reduces to the finding
of the characteristic polynomial of the matrix A, the choice of the canonical basis, and the
solution of the system of linear equations. At the same time, an alternative way of
synthesizing stabilizing regulators is possible, based on the application of the theory of linear
matrix inequalities and effective algorithms for their solution, implemented, for example, in
the MatLab package [6,8].

Let the control object be described by the equation

? = Ax(t) + Bu(t), (7

j<0, X>0.

where x(t) e R" — state of the regulator, u(t) e R™ — control.

The task is to choose the law of management u(t)from the class of linear feedback on
the state of the form

u(t) = Kx(t), (8)
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where K — the matrix of the parameters of the regulator corresponding to the order
in which the matrix of the closed system (7), (8) will be D-stable, that is, all its eigenvalues of
the roots lie in the given LMI- domain.

According to Theorem 1, the problem of D-stability is reduced to the finding of the
matrices X = X' >0andK, satisfying inequality M (A+BK, X)<0,which is nonlinear in
relation to these matrices. However, if you enter the notation Z = KX , then the last inequality
can be imagined as a linear matrix inequality of the form

M(A+BK,X)=P®X +G®((A+BK)X)+G' ®(X(A+BK)")=
—POX+G®(AX +BZ)+G' ® (AX +BZ) =P® X +GQ(AX)+G ®(BZ) +
+GT®(AX) +G'®(BZ)' =M (A X)+G®(BZ)+G' ®(BZ)' <0

on unknown matrices KandZ. After these matrices are found, the desired matrix of the
parameters of the regulator is like K= ZX™.

Let's consider another approach to the synthesis of D-stabilizing regulators based on
the measured output, based on the construction of observers of the state of the object. Let's
start with Luenberger's observers in complete order.

For a controled object

{)‘((t) = AX(t) + Bu(t), (9)
y(t) = Cx(1),

where x(t)e R" - state of the regulator, u(t)e R™ - control, y(t)e R? - the

measured output of an object) we choose a regulator in the form of an observer of the state of
Luenberger of complete order

X, (t) = AX, (t) + Bu(t) + L(Cx, (t) - y(t)), (10)
u(t) = Kx (1),

where x, (t) e R" - state of the regulator.

It is necessary to define matrices and so that the closed system (9), (10) is D-stable.
We introduce the vector of inconsistency e(t) = x(t) — x, (t) and as a state of a closed

system we choose a vector (X" (t),e (t))T \Which satisfies the generalized equation

d(x(®)) (A+BK —BK \(x(t)
E(e(t)j_( 0 A+Lcj(e(t)j_

Obviously, for D - stability of this system, it is necessary and sufficient that the
matrices A + BK and A + LC be D - stable. Applying now to the matrix A + BK of Theorem 1,
in which the criterion of D-stability is given in the language of linearmatrix inequalities, we
arrive at the following form of LMI

M(A+BK,X,)=P®X, +G®((A+BK)X,)+G" ®(X,(A+BK)") = (1)
=M(A X,)+G®(BZ,)+G" ®(Z/B") <0,

where Z, = KX’
Applying to the matrix criterion D - stability in the form of inequality (6), we obtain
another LMI
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L(A+LC,X,)=P®X,+G®(X,(A+LC))+G" ®((A+LC)" X,) =
=L(AX,)+G®(Z,C)+G"' ®(C'Z,)<0,

where Z, = X, L.

Thus, we arrive at the necessity of derivation of Theorem 2.

It is necessary and sufficient that the linear matrix inequalities (11) and (12) be solved
with respect to the variables in order for the object (9) to be D-stabilized by means of the
controller at the output of the form (10) X, =X >0, Z,andX, =X, >0, Z,. In the

case of the possibility of solving these inequalities, the parameters of the regulator are as
follows

(12)

K=2zX" L=X,Z,.

We now synthesize a regulator based on the Luangenberger observer of incomplete
order [1,5]. Suppose that in the control object (9) the rank of the matrix C is (p< n). Consider
an observer

dz(t)

e Fz(t) + TBu(t) + Qy(t). (13)

where z(t)eR', | =n— p-observer state, y(t) and u(t) — the measured output and
control in the object (9), and the matrices F, T and Q satisfy the matrix equation

TA-FT =QC. (14)

Re-enter the vector of inconsistency e(t)=z(t)—Tx(t)and note that due to the

equations of the object and the observer for him equality is fulfilled
de(t)
——==Fe(t).
m (t)

Thus, if the matrix F is a D-stable, then the vector z (t) asymptotically tracks the vector
Tx (t) and in combination with the vector y (t) gives an estimate of the state vector of the
object.

To simplify, but not diminishing the generality, we will accept C = (EpOpq), wherek,
—unit matrix of dimension p. Note that this can be achieved by replacing the variables
accordingly. We break the matrix A and B into blocks

A:(Au Alzj, B:(Bl)
Ao Ay B,

B sikux A1 € R P, By e R”™— (the orders of other blocks are determined in an obvious manner).
Choose the matrices F, T, and Q, which satisfy the equation (14), in the following way

F=A,+LA,, T=(L E,), Q:A21+LA11—(A22+LA12)L, (15)
where the matrix L should be determined from the condition that the matrix F be D-
stable.

In accordance with the chosen choice, we introduce the equation of the regulator
(control) in the form

dxorlt(t) = (A, + LA, )X (1) + (B, + LB )u(t) + [ A, + LA, — (A, + LA, ) L] y(1),
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U(t) = Kyx, (1) + K,y (b), (16)

where the matrices K; and K; must be determined from the condition of the D-stability
of the closed system (9), (16). Substituting the equation of control into the output system and
taking into account that x, (t) = Tx(t) + e(t) , we will get

O _ (a4 BK)x(t) - BKe(t),
de(t) _
el Fe(t),

where K = (K, +K,L K,).

Thus, the matrix K is based on the condition that the matrix A + BK is D-stable, and
then, taking into account the already found matrix L, the matrices of the regulator K; and K;
are determined. Applying now Theorem 1 and the technique of derivation of Theorem 2, we
arrive at the following theorem 3.

In order for an object described by system (9) to be D-stabilized by means of a
regulator on the output of the reduced order of form (16), it is necessary and sufficient that the
linear matrix inequalities

M (A+BK,X,)=M (A X,)+G®(BZ,)+G" ®(Z]B")<0,

L(Ay, + LA, X,) = L(A,, X,) +G ®(Z,A,) +G ®(A,Z,)<0
weresolvedwithrespecttomatrixvariables X, = X >0, Z,and X, = X, >0, Z,, where the

matrix M (A, X,) and L(A,,, X,)are determined by formulas (3) and (6) respectively. In

the case of the possibility of solving these inequalities, the parameters of the regulator are as
follows
K,=H,, K,=H,-H,L,
where H =(H, H,)=ZX;*, H,eR™" H,eR™, L=X,Z,.
Conclusion. Thus, the use of the Luenberger observers allows for the synthesis of D-

stable regulators for the complete and reduced order of the Leuvenberger observers on the
basis of solving only linear matrix inequalities.
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CuHTe3 MOJANBHOr0 KepyBaHHA O0araTOBUMIPHUMH JIHIiHHMMH cHCTeMaMHM B

CUIBCHKOroCcnoIapcbKOMY BUPOOHMITBI HA OCHOBI JIIHIHHUX MATPUYHHUX HepiBHOCTEH

JaeTbes po3B’s130K 3a1adi MO0y I0BH MOJABHUX PETYIIATOPIB UL TiHIHHIX 0araTOBUMIPHUX CHCTEM B
CiITBCBHKOTOCITONAPCHKOMY BUPOOHHMIITBI, 110 3abe3mneuyrorTs D- crifikicTh (acHMIITOTHYHY CTifiKicTh) 00'ekTa
KepyBaHHs. KepyBaHHS TPEICTaBICHO y BHIVISII PETYJSATOPIB, IO 3a0e3MEeUYyIOTh 3BOPOTHHUM 3B'SI30K 3a
BUXOJIOM 0O0'€KTa KepyBaHHs, 1 BUKOPHCTOBYE criocTepiradi JIyenOeprepa moBHOro i 3HMKEHOTO mopsiaky. st
OOYHMCIICHHS MAaTpPUIb PEryJSTOPIB BHUKOPHCTOBYEThCS TEXHIKAa JIHIHUX MaTpUYHUX HepiBHOCTEH 1
y3arajbHEHHs MOHSTTs cTifikocti 3a Jlsimynosum (D - crifikicts). HaBeneHi Teopemu, o nar0Th HEOOXimHi i
JoctatHi yMoBH D - cTIMKOCTI KepOBaHOI CHCTEMHU.

B po06oTi maeThcsi KOHCTPYKTHBHUI PO3B’s30K 3ajmaui cuHTe3y D - crabimisyBaibHUX (MOIAIbHHUX)
PeTYIIATOPIB 32 BUMIPIOBAaHMM BHXOIOM O0'€KTa KepyBaHHs, 3aCHOBaHHMU Ha MOOYIIOBI CIIOCTEpIraviB CTaHy
00'eKTa TEBHOTO MOPSAKY. PO3B’SI30K OTpHMaHO Ha OCHOBI BHKOPHUCTaHHS TeOpil JIHIHHUX MaTPHYHIX
HepiBaocteit  (LMI).  [lnst  9mcenbHOrO MOMCNIOBAHHS OTPHMAHMX MOMAJIbHUX PETYISTOPIB  MOXKHA
BUKOPHCTOBYBATH €(EKTHBHI METOH OIYyKJIOi ONTUMI3alii 1 BIMOBIHE MTPOrpaMHe 3a0e3MeUeHHS, SKE BXOAUTh
JI0 PSITY TTAKETiB MPUKIIAJHUX TPOTpam, 30Kpema, B cuctemy MatLab.

OnucyoThCSI METOJIM PO3B’sI3aHHSHE TUIBKM MPSIMOi 33j1a4i MOJAJIbHOIO KepyBaHHS, KOJIM BHOOpPOM
napaMeTpiB peryJssitopa 3adesreuyeTbesi 30ir KOPEHIB XapaKTepHUCTHYHOIO PIBHSHHS 3aMKHEHOI CHCTEMH 3
TOTIepeTHhO 33/IaHMM HaOOPOM KOMITIEKCHUX YHCENl, PO3TAlllOBAaHUX B JIBIM YacTHHI KOMILIEKCHOI TUIOLIHHH,
aje 1iHIIUX 3aJad MOJAIBHOTO PETyJIOBaHHS, B SKHX BHMOra TOYHOI'O PO3MIIIECHHS KOPEHIB B JIBIH
KOMIIJIEKCHOI IIBIUIOMIMHI B)XXE HE HAKJIAJAa€Thes, a MOTpiOHA JHUIIe 1X NPUHAIEKHICTH 10 JCSIKHX 3aJaHUX
obuacreii. Taki obyacTi, onmcani CHCTEMOIO JIIHIHHUX MaTpUYHUX HepiBHOCTEH, HazuBaroThest LMI- obmactsamu.
AWHAMiYHA cHCTeMa, MoJajibHe KepyBaHHsI, peryJisTopu, D-crifikicTh, cnoctepiraui JlyenGeprepa,
JIiHiliHI MATPHYHI HepiBHOCTI, KPOHEKePOBHUIl 100yTOK MATPUIIb
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