TexHika B CIIbCHKOTOCIIOIAPCHKOMY BUPOOHUIITBI, raJly3eBe MalHOOY IyBaHHs, apromMaTtu3anis, 2014, pun. 27

UDC 004.415.2:519.876.5

Aleksandr Dorensky
Kirovograd National Technical University

Method of the Models’ Synthesis for Software
Automated System Objects’ States in Digital Images
Processing

This article proposes a method for the synthesis of the behavior of software objects models (SOM) for
the developed object-oriented software systems for automated digital image processing in order to avoid
systemic and algorithmic errors in the design phase of a software system, as well as to reduce the time of its
development. The process of constructing the SOM proceeding from its finite-state representation is viewed
from the standpoint of abstract synthesis of an automata’s finite state. Thus, the specialties of the synthesis of
finite automaton SOM, the construction of the map defining a plurality of channels management class of objects,
the order to bring it to an automata, the construction of the canonical set of events and their regular expressions
to display defining a plurality of channels management of software objects class for object oriented software
system are considered and justified.
software, a automated system, instance of the class, object-oriented model, finite automaton model, the
behavior of the object, an object's state

A.IlL. lopeHckuii, mpenos.

Kuposoepadckuii nayuoHnanbHulil mexXHUYecKull yHugepcumen

Meton cuHTe3a Mojeseill COCTOSIHMI 00bEKTOB NPOrpaMMHOIO ofecreyeHUsi aBTOMATHU3MPOBAHHOM
cucTeMbl 00padoTKH HH(PPOBLIX H300paKeHUIT

B crathe mpemiokeH METOA CHHTE3a MOJENeld MOBEJCHHS MPOrpaMMHBIX 00bekToB (MCO)
pa3pabaTbeiBaeMOro 00BbEKTHO-OPUEHTUPOBAHHOTO IPOrPAMMHOT0 00ECIIEYeHUs! CUCTEMbl aBTOMaTH3UPOBaHHON
00paboTKH MU(POBBIX M300paKEHUH C IETBI0 N30eKAHUSI CHCTEMHBIX W AITOPUTMHUYECKHX OMIMOOK Ha HTare
MPOEKTHPOBAHUS TIPOTPAMMHOIN CHCTEMBI, a TaKXXe COKpaIlleHHsT BpeMeHHU pa3paborku. [Iporecc moctpoeHus
MCO, ucxons U3 ee KOHEYHO-aBTOMATHOTO IIPEJICTABIICHUS, PACCMATPUBACTCS C TOYKH 3PEHHUS aOCTPaKTHOTO
CHHTE3a KOHEYHOTO aBTOMara. TakuMm 00pa3oM, HM3JI0KEHBI W OOOCHOBaHBI OCOOEHHOCTH CHHTE3a KOHEYHO-
aBromatHOH MCO, mocTpoeHHe OTOOpaKEHHUs, ONPENENAIONIET0 MHOXECTBO KaHAJIOB YIpaBICHUsS Kiacca
NPOTrPaMMHBIX OOBEKTOB, IMOPSAOK HPUBEICHUS €ro K aBTOMAaTHOMY BHJY, IOCTPOEHHE KaHOHHYECKOTO
MHOXKECTBa COOBITHI M MX PEeryJsipHbIX BBIPAXCHUH ISl OTOOpayKeHHs], ONPEEISIOMEr0 MHOXKECTBO KaHAIIOB
yIIpaBJIeHUs Kilacca MPOrpaMMHBIX 00BEKTOB 00bEKTHO-OPUEHTHPOBAHHOM IPOTPAaMMHON CUCTEMBI.
NporpaMMHoe odecreyeHHe, aBTOMATU3HPOBAHHAA CHCTeMa, JK3eMILUIApP KJjacca, O00BbEKTHO-
OpPHEeHTHPOBAHHASI MO/Ie/Ib, KOHEYHO-ABTOMATHAasl MO/ieJIb, OBe/IeHHe 00beKTa, COCTOAHUE 00beKTa

Introduction. Massive amounts of data circulate in modern information and
telecommunication systems. The vast majority of the processed and transmitted information is
graphic: digital images and videos, which are characterized by extra-large volumes. The
volumes of this kind of data are constantly increasing. This leads to an overload of data
channels, and as a consequence, to a significant increase in the time of information delivery
[1]. Therefore, currently, not only the increase of the capacity of modern means of
communication, but also the development of a software system to automatic processing of
digital images for the purpose of compact representation (compression) is important.

Statement of the problem. Software (SW) of the automated digital imaging system
(ADIS) must be reliable, high-performing, flexible, and should provide an opportunity for
improving, scaling, and upbuilding its functionality [1, 2].

© O.P. Dorensky, 2014

283

TexHika B CLICHKOTOCIIOIAPCHKOMY BUPOOHUIITBI, raJly3eBe MaiMHOOY IyBaHHsI, apTomatu3aiis, 2014, pur. 27

It is possible to ensure these requirements and characteristics through the use of
object-oriented approach (OOA) [2]. Unlike the traditional approach to development [3], the
OOA makes emphasis on both the information and the software objects’ behavior. This leads
to creating flexible SS that allow change of behavior and/or information.

However, even the use of the OOA does not prevent errors in the software. And the
most important are the errors of software objects’ interaction, most of which occur at the
design stage [4]. The testing of models is carried out to identify them in the early stages of the
life cycle of the system. Sufficient attention is given to the development of tests in the
literature, while the creation of test models is not actually considered.

Thus, for the design of object-oriented software (OOSW) ADIS is necessary to
provide automated conversion of object-oriented software models in the transition from one
model to another. This lets testing them in terms of software models’ behavior analysis. Thus,
a scientific and technical problem of the synthesis of models states of the instances of classes
OOSW ADIS is important.

Analysis of recent research and publications [1-2, 5-9] has shown that in OOSW
designing an object decomposition and the techniques of presentation of logic (structure of
classes and program objects) and physical (architecture of modules and processes), as well as
of static and dynamic models of object-oriented software are used. Models are developed on
the basis of objects and phenomena of the real world; describe the behavior of object-oriented
software, developed within the domain objects associated with the states of objects.

In [5], for software development using UML an object model is built, which reflects
the basic abstractions of a domain, the variants of the software usage, its physical
representation, as well as the information flows that function in the software. In [6], the object
models of software systems built using UML are proposed. However the models that reflect
the basic abstraction domain and the physical representation of the software are built. In fact,
they are a set of models that characterize certain aspects of the software system. In turn, it
does not provide an integrated behavior modeling of the software objects. In[7], a
specification of the program management system, consisting of a logic model, patterns of use,
implementation, processes, and deployment is performed. Each of these models describes a
certain aspect of the system, and all together they make up a relatively complete model of the
developed software. In [8], an object-oriented modeling approach of software systems is
described, it proposes and describes a three-tier architecture of a conceptual model that
reflects the development of reusable components of different nature (structures of domain
models). In [9], the strategy of the synthesis of object-oriented models in terms of object-
oriented approach is used for the synthesis of the complex structure of the object-oriented
software, which consists of a static and dynamic component. Thus, the article proposes the
construction of structures of both static and dynamic components of the complex model
OOSW within the collective and individual behavior of the main conceptual units.

The wording of Article goals. Based on the analysis of recent research and
publications it can be concluded that not enough attention is paid to the issue of constructing
and using of the behavior models of the software objects. Thus, in developing of the software
of ADIS, a problem of developing of models of instances of classes of the developed OOSW
should be solved. The purpose of the research is to develop a method for the synthesis of a
state of the models of software objects of OOSW automated system for processing of digital
images that will provide: 1) the formalization of the process of determining the conditions and
their relationships in the life cycle of an instance of OOSW; 2) reducing the complexity of the
development of the dynamic component of an integrated model (IM) of OOSW [4, 9] in the
process of the development of a software system at the logical level.

The main part. At the initial stage of synthesis of the structure of the dynamic

284

TexHika B CIIbCHKOTOCIIOIAPCHKOMY BUPOOHUIITBI, raJly3eBe MalHOOY IyBaHHs, apromMaTtu3anis, 2014, pun. 27

components of IM OOSW [4] while developing ADIS, the process of development of the
states of software objects model (SOM) of OOSW based on its finite-state representation,
viewed from the standpoint of abstract synthesis of a finite state automata [9]. As a result, it is
necessary to get a formalized SOM provided with a marked transition table, on which a
corresponding graph of a state transition to the Moore’s initial partial finite automaton is built.

Let’s give a precise statement of the problem of the SOM synthesis according to the
method of synthesis of finite automata by alphabetical mappings they implement: for any
class of objects of OOSW sc € SC is required by the injectivity mapping Fj,, of the set of

words over a finite alphabet of events in this class into a set of words (sequences of activities)
over a finite alphabet of its activities, i.e. on multiple channels of the class management [4], to
construct a finite-state model of behavior instances, given by the marked transition table.

Thus, the algorithm of the method consists of interconnected components:

— SOM formalized representation in terms of the Moore’s initial finite automata [9];

— procedures of formalizing of a plurality of the class control channels [4] as the
alphabetical display;

— of adapted method of the abstract synthesis of the Moore's finite automata by the
implemented alphabetical mappings.

The procedure of the formalization of multiple channels of the class management in
the form of alphabetical display includes the following stages:

1. Construction of the set of tracing of sequences of events the object class (TSEC) [9]
STE,. for sc e SC in the alphabet of events SE : abstraction of objects involved in all
models of message sequences of objects [4, 9], in the form of the corresponding classes of
OOSW; abstracting of receiving messages by the objects in the form of the corresponding
classes of events of OOSW.

2. Representation of every TSEC ste € STE , by a regular setting which can be written

as a product of elementary events in the input alphabet SE . the events of the class sc € SC
of OOSW: rv , = se,se,...se,

im *

3. Presentation of the result of execution by the class instances of any sequence of
activities sch € SCH in the alphabet SH , performed in response to a TSEC from the

plurality STE

sc 2

as an injective mapping F, ., : STE . — SCH , (multiple channels of the
class management class [4]).

Performing the first step of the adapted method of an abstract synthesis of finite
automata is that for each class sc € SC of OOSW, a mapping Fy, ., : STE,, - SCH _, which
defines a set of control channels, is transformed as follows:

1. Written as correspondence table where each row has the following form:
ste = Fg, q (ste) or ste — sch, where stee STE . and sch e SCH .

2. Leads to an automaton, i.e. mapping Fj

s 18 resulted in the display of the form

F

sen » Satisfying the four conditions of automaton.

If any alphabetic mapping satisfies the four conditions of the mapping automaton, the
Moor’s finite automaton inducing this mapping can be constructed [10]. As Fj, ,, represents
the mapping, it satisfies the first condition of the automaton by determination. The mapping
F, ., satisfies the third condition of automaton based on the way of its construction during

the conceptual analysis and determination of this surjective mapping. Thus the
mapping Fj,., does not satisfy the second and the fourth conditions of automation, as

generally the domain of definition F,, does not contain all the initial segments of all TSEC

285

TexHika B CLICHKOTOCIIOIAPCHKOMY BUPOOHUIITBI, raJly3eBe MaiMHOOY IyBaHHsI, apTomatu3aiis, 2014, pur. 27

and respectively, does not translate in the initial segments of TSEC into corresponding initial
segments of activities [9].
Thus, in order to develop a finite-state model of behavior instances OOSW, which

would induce a mapping F,,, it is necessary to implement mapping cast F, ., to the
automata form. As the mapping Fj, , satisfies the third condition [10], then it is sufficient to
apply to it the operation of completion only. However, in this case, the mapping Fj, , In

some cases, it may become ambiguous, since one and the same word may be included in an
initial interval into several different words from the definition of the mapping Fy,,, -

In the case when the mapping is derived from an unambiguous alphabetical mapping
as the result of a standard operation of the word length alignment, the completion of this
mapping is unique and is an automaton mapping [10]. Thus, with respect to the mapping of a
set of words over a finite alphabet of the event class in the set of words over a finite alphabet
of OOSW class will perform the operation of the alignment of words length and operation of
completion of this mapping.

The algorithm of performing of the standard operation of the alignment of words
lengths is as follows:

1. To the input alphabet of the mapping Fj,., , 1.e. the multitude of events SE, of the

class sc € SC, a new event is added, which will be considered an empty one. Let’s define this
event through se’.

2. To the output alphabet of the mapping Fj,,, , 1.. the multitude of events SH , of
the class sc € SC a new event is added, which will be considered an empty one. Let’s define

this event through sh°.

3. For each sequence of the class events or the tracing scenario ste € STE of

empty events se’ is attributed to the right, thus »n_ is assumed equal to the word length

sc 2 nste

(sequence of the class activity) sch = F§, (ste).

4. Each sequence of the class activities sch € SCH_,, m_, of empty activities sh’ is

attributed to the left, thus m_, is assumed to be equal to the word length (sequence of the
class activity) ste.

5. A new mapping F,,' of the multitude STE ' is built for the words in the alphabet
SE., u(seo) into the multitude SCH_' of the words in the alphabet SH u(sho), which
translates ste' and sch' into one another, the received as the result lengths of the words ste
and sch respectively: F,, . ,'(ste') = sch'.

Thus the mapping F, ,, 1s uniquely recovered as a result of the standard operation of
alignment of word lengths mapping Fj,,'. It can be assumed that a zero aligning operation

is applied, in which no empty appending letters happens.
The next operation is the operation of replenishment. It may be applied only to the
aligned mapping Fj, ,,"'. The essence of the operation of replenishment is to spread the

mapping on the initial segments of words: if O is the arbitrary initial segment of any word
ste'e STE,,', then Fy,,'(5) is equal to the initial segment of a word Fy,,'(ste'), which has
the length equal to the initial segment &. As a result of applying the operation to
replenishment to the aligned mapping Fj, " we will get a new mapping F, "', the domain
STE " which satisfies the completeness.

As a result of the two operations described above, to the mapping of the multitude of

286

TexHika B CIIbCHKOTOCIIOIAPCHKOMY BUPOOHUIITBI, raJly3eBe MalHOOY IyBaHHs, apromMaTtu3anis, 2014, pun. 27

words over a finite alphabet of class event in the multitude of words over a finite alphabet of
OOSW class of activities, and then the operation of replenishment, we get the automaton

mapping F,.,"", satisfying all the conditions of automaton, i.e. the mapping Fg., -

In general, the result of the first stage of the adapted method of abstract synthesis of
finite automaton model of behavior of OOSW instances is the abbreviated table of

correspondence automata display F,.,, into which an initial mapping Fj,, has been

transformed. A condensed correspondence table is called a correspondence table in which no
input word is an initial segment of any other input word. When an automaton mapping Fi..,

is set by the condensed table, its extension to the initial segments of the input words that are
included in the table is based on the fourth condition of automaton. Thus, based on the
condensed lookup table the full correspondence table can always be recovered.

Performing the second stage of the adapted method of abstract synthesis of SOM of

OOSW is to define a canonical set of multiple events corresponding to the mapping Fi., -
Let’s define the canonic multitude of the events correspondent to the mapping Fi.q,
through SFE*. The event SFE , € SFE* correspondent to the events of the class of OOSW

sh may be developed following the next algorithm:
1. During the analysis of the condensed table of the compliance of the mapping F..., ,

a multitude {y | of all the initial segments of output words ending with the letter sh is defined.
2. The multitude {5,} of the initial segments of input words of the mapping F.' .,

uniquely relevant to the elements of the multitude {n j}, and will define the event

SFE, eSFE', ie. VSFE, eSFE"(V8eSFE,an=F,(38)=(Mn=(nsh)), where
SFE, c STE " ; n,m, € SCH" and d € STE .
At this stage the control of the first phase of operations may be also performed, i.e. the

mapping F,. .. is automated only when the point events are disjoint. Thus, the multitude

SFE* must satisfy the conditions of automation [10], according to formulas (1) and (2):

(SFEA = {SFE[})& (VSFE[€ SFE* (Vste e SFE,,ste = se_,, se,, sed(m)({ } SE)))&
(VSFE,,SFE, e SFE*,i # j,SFE, N SFE, = @)& (VSFE, eSFEA SFE, m{ °=2), (1)

s=12,....n
n — cardinality of the multitude SE ; i,j=1,2,...,m; m — cardinality of the multitude SFE 4.
I(ste) — the length of a word ste.

That is, automata multitude of events SFE” is made of the finite number of events

SFE ;in one and the same input alphabet SE, , which are disjoint and do not contain the

sc

where SFE” — automata multitude of events in the input alphabet SE

sc’

empty word ste’:

VSFE, € SFE 4 (Vste e SFE, i+ j,((VSste = € €y(s50) (ste e,. ..esl(m)es(l(&‘w)ﬂ)...esl(m))
3ISFE, e SFE*(3,,, € SFE,))& (VSFE, e SFE*,SFE, n {5°}=2))) ,)

where (5,) — is the length of the initial segmentd_, of the word ste.
Thus, the result of the second phase is the canonic multitude of the events

287

TexHika B CLICHKOTOCIIOIAPCHKOMY BUPOOHUIITBI, raJly3eBe MaiMHOOY IyBaHHsI, apTomatu3aiis, 2014, pur. 27

SFE* = {SFE,} of the mapping F.,, .

Performing the third stage of the adapted method of the abstract synthesis of SOM of
OOSW is to find the simplest possible regular expressions for each event found in the
previous stage of the event SFE , € SFE*.

At this stage, as a rule, the identity transformations in the algebra of events are used,
as well as the following method of automatic events’ extension: the construction of the
simplest regular expression for an automata event, an arbitrary set of forbidden words can be
added to it.

All the words of any input alphabet are broken by the automaton conformity into two
classes: the class of valid and the class of forbidden words. There are several ways to specify
the multitudes of valid and forbidden words [10]. Valid will be assumed every word
contained in only one of the set of regular events, and such that each of its non-empty initial
segment is also contained in exactly the same of the specified events. All the other words, as
well as the words for some of the letters of which the corresponding output letters are not
defined, constitute the multitude of forbidden words. The totality of all the forbidden words
for this automaton conformity is a domain ban.

When the domain of the original automaton mapping F.., is ultimate, it is sufficient

to use only identical transformations. In this regular expression found for the previous stage
events in the most general case, to perform identical transformations represent the disjunction
of the initial segments of sequences of events for OOSW classes, i.e. the disjunction singleton
non-elementary events, which in turn are represented as a product of a finite alphabet letters

in the events of OOSW class: SER, = }/18 ;» Where SER, is the regular expression to
a°.

automaton events SFE,, € SFE*, and n is the power of automaton event SFE,, .

Thus, the result of the third stage is the multitude of all built regular expressions
SER" = {SERsh} for the found on the second stage canonic multitude of events
SFE* = {SFE,}.

Performing the fourth stage of the adapted abstract synthesis method automaton model
of behavior instances of OOSW class is its construction over the canonical multitude of
events SFE“, given by the appropriate set of regular expressions from the multitude SER”.

There exists a single constructive technique that allows for any finite multitude of
regular events, given their regular expressions to build the Moore’s final automaton. Thus the
number of various output signals does not exceed 2", and the number of states - not more
than 2”*', where n is the general number of regular expressions, m — general number of the
letters of input alphabet (including repetitions), which are included into defined regular
expressions [10].

The synthesis process can be carried out in two main variants: with a natural area with
the exception of the prohibition or with the exception one of the events. Let’s use the first
variant of the synthesis automaton model of the instances behavior of OOSW following the
canonical multitude of events. This way the prohibition job coincides with the method
described in the previous step. Thus, the synthesis algorithm of finite automaton model of
behavior instances of OOSW by the canonical set of events SFE“ has the following form.

Step 1. The given multitude of regular events SER" = {SERsh} is performed by the

multitude SER"'= {SERsh'} of written correctly regular expressions. The condition of the

correct record of regular expressions is that all the original regular expression of the multitude
SER“, which are polynomials, are enclosed in brackets.

288

TexHika B CIIbCHKOTOCIIOIAPCHKOMY BUPOOHUIITBI, raJly3eBe MalHOOY IyBaHHs, apromMaTtu3anis, 2014, pun. 27

Step 2.In the multitude SER”' of properly recorded regular expressions there
produced a markup of places who share the signs of these expressions. The signs of any
expressions SER,' are the letters of the alphabet SE

disjunction sign and brackets. In this case let’s consider three sets of locations:
— multitude of sharing locations SPE, = (spe,), where every location spe, divides any

the symbol of an empty word se’, the

sc

'

two signs of any regular expression SER,', [=1,...,r and r— the power of the multitude
SPE,;

— multitude of the initial locations SPE,, = {spe j}, where every location spe; is placed
to the left of the very left sign corresponding to it expression SER,', j=1,...,n and n — the
power of the multitude SPE,, , equal to the power of SER"';

— multitude of the finite locations SPE. = {spei }, where every spe, is placed to the left
of the very right sign corresponding to it expression SER,', j=1,...,c and ¢ — the power of
the multitude SPE,., equal to the power of SER"".

Thus for synthesis algorithm basic concepts of the main and pre-main locations are
also very important. The main location is any location just to the left of which is the letter in
the basic alphabet, as well as any initial place [10]. Let’s denote the multitude of all the main

locations of the multitude of regular expressions SER?' through SPE,, where
SPE, c SPE, U SPE,, U SPE. and SPE, N SPE, = SPE,, .
The pre-main location spe is any location just to the right of which there is a letter of

the main alphabet. Let’s denote the multitude of all the pre-main locations of the multitude of
the regular expressions SER”' through SPE,, where SPE, < SPE, USPE, . And the
multitudes SPE, and SPE, may intersect.

Step 3. Every main location spe € SPE, is attributed as and index a non-negative
integer, with all initial locations are attributed to the same index 0. All other locations are

numbered randomly with natural numbers 1, 2, ... This process may be formalized as the

mapping F,, :SPE, — N, where N is a multitude of natural numbers. At the same time

the introduced indices Fy,, (spe) will be called the main indices.

Step 4. To the indexed as a result of the third step of the multitude of regular
expressions SER*' an operation of identification of the respective locations and identification
operation of similar locations is applied consistently, step by step.

Step 5. Every main index F,, (spe) of every main location spe € SPE,, distributed as

a minor index of all places (both core and non-core) that are subject to spe, but different from

it. In addition, each subordinate position can receive a set of non-core indices.

Step 6. The construction of the required transition table of automaton model of
behavior instances of OOSW is carried out. Wherein the input signals are the letters of the
initial alphabet SE , and the states are taken as in the general case of all subsets of a

multitude of all the major indices. In this subset consisting of the major indexes i,...,1

sin s

sc 2

where n =1, will be denoted through the disjunction of indices i, v...vi, , and the empty

multitude of the main indices will be denoted by the star (empty state).

An algorithm for constructing the transition table of the automata is as follows:

1. Table rows are designated by letters of the input alphabet in a given multitude of
events.

289

TexHika B CLICHKOTOCIIOIAPCHKOMY BUPOOHUIITBI, raJly3eBe MaiMHOOY IyBaHHsI, apTomatu3aiis, 2014, pur. 27

2. The initial state is 0, and with the column corresponding to this state, the transition
table construction begins.

3. The columns corresponding to the remaining states are issued only after designating
their status has already appeared in the columns of the table discharged earlier.

4. At the intersection of the line se; and the row ss, of the table the state (many of the

major indexes) is discharged, consisting of the main indices of all the main locations
separated by the event se, from the immediately preceding them pre-main locations,

including which indexes (both core and non-core) there is at least one index belonging to the
state ss . In the case of non-existence of the main locations with the required properties at the

appropriate location in the table an empty state is issued.
Step 7. The marked transition table of the desired finite automaton model of behavior
instances of OOSW is built. Every of the states i, v...vi , where n>1, which mark the

columns in the transitions table, and is indicated by the subset (SERS,,I, e SER,)g SER"" of

all the symbols of those and only those regular expressions, the finite locations of which
contain among their indices (both core and non-core) at least one of the indices i,...,i, . The

empty state is denoted by the empty multitude of regular expressions.

Step 8. For a given area of prohibition or the multitude of admissible words of finite
automaton model of behavior instances of the class are uncertain states of the model.
Introducing the uncertainty of essence is marked in the transition table is as follows:

1. There stand uncertain outputs of finite automaton model of behavior instances of the
class. Uncertain, according to the prohibition imposed by the output signals are all composed
of two or more events, as well as an empty output signal.

2. Undefined states of the finite automaton model of behavior instances of the class are
allocated. Undefined are all states that are marked with undefined output signals. Since the
initial state is ranked as one of the elements in the transition table, it is not considered as
undefined.

3. All occurrences of undefined states in the marked transition table automaton model
of behavior instances are replaced by dashes, and certain of these states are excluded from the
table columns.

4. In case of unreachable states, the indicated by them columns are also deleted (SOM
performed minimization of OOSW).

Step 9. The redesignation of the output signals and synthesized finite-state automaton
model signals and states are carried out. The essence of the execution is as follows: 1) Each
output signal is designated by the relevant activity SFE,,; 2) Every state is defined as ss;,

where j=0,1,2,.... And the state ss” is defined as the initial one. From a content point of

view, the state corresponds to an event class of OOSW, in which the instances of this class go
to the appropriate state.

Conclusions. The process of the development of SOM of OOSW, based on its finite-
state representation, is considered from the standpoint of the abstract synthesis of a finite state
automate. Thus, the considered and justified are the specialties of the synthesis of finite
automaton SOM of OOSW, construction of the mapping defining a plurality of channels
management of the objects’ class, and the order to bring it to an automata, the construction of
the canonical multitude of events and their regular expressions for the mapping defining a
plurality of channels management of the object class.

Based on the proposed adapted method of the abstract synthesis of the finite
automaton model of instances’ behavior of the software class, the method of synthesis of the
models’ states of the software objects (instances of classes) of object-oriented software is

290

TexHika B CIIbCHKOTOCIIOIAPCHKOMY BUPOOHUIITBI, raJly3eBe MalHOOY IyBaHHs, apromMaTtu3anis, 2014, pun. 27

developed. The proposed method provides the formalization of the process of determining the
conditions and their relationships in the lifecycle of a software object of OOSW, and also
reduces the complexity of developing an integrated dynamic of the component model of
OOSW of ADIS in its design at the logical level.

Direction for future researches is developing a test SOM of OOSW with the help of
the proposed method. This will ensure the practical implementation of testing of individual
behavior of the software objects of OOSW to identify systemic and algorithmic errors in the
process of the development of software systems.

References

1. Smirnov O.A. Research the impact of compression on images prompt delivery in the
telecommunications system / Smirnov O.A., Dreyev O.M., Dorensky O.P. // Information
processing systems. —2013. — Issue 8(115). — P. 234-239.

2. Orlov S.A. Software engineering / S.A. Orlov. — SPb.: Piter, 2002. — 464 p.

3. Dudzianyi .M. Object-oriented modeling of software systems / [.M. Dudzianyi. — Lviv:
Publishing Center of Ivan Franko LNU, 2007. — 108 p.

4. Smirnov A.A. Mathematical formalization of the process of designing object oriented software
information systems/A.A. Smirnov, A.P. Dorensky // Information technology and systems
management, education, science: Monograph / Edited by Ponomarenko V.S.—Kh.: Publisher
“Shchedra sadyba plus”, 2014. — P. 22-36.

5. Yemelianov V.O. Object model software protect sensitive user data / V.O. Yemelianov //
Information processing systems.— 2012. — Volume 2, Issue 3 (101). — P. 156-159.
6. Maievskii D.A. A priori estimate of the number of defects in software information systems /

D.A. Maievskii, S.A. Yaremtchuk // Radio electronic and computer systems. — 2012. —
Issue 5 (56). — P. 73-80.

7. Zhurakovskyi B.Y. Object-oriented technology of designing control systems //
Zhurakovskyi B.Y., Varfolomeieva O.G., Gladkykh O.V., Khakhliuk O.A. / Bulletin SUICT. —
2013. —No. 1. — P. 49-53.

8. Veres O.M. The use of object-oriented approach to building models of DSS / O.M. Veres,
Y.O. Veres // Bulletin of National University “Lviv Polytechnic”. — 2013. — No. 770. — P. 30-36.

9. Dorensky O.P. Synthesis of the object-oriented software integrated model's structure /
O.P. Dorensky // Information processing systems. —2013. — Volume 2, Issue 2(118). —P. 68-72.

10. Glushkov V.M. Synthesis of digital automata / V.M. Glushkov. — M.: Fizmatlit, 1962. — 476 p.

O.I1. lopeHcbKkMii, BUKJI.

Kipoeozpadcoxuii Hayionanvruli mexuiunuil yHigepcumem

Meton cuHTe3y MoAenedl CTaHiB 00’€KTIB NporpaMHOro 3a0e3neveHHsT ABTOMATH30BAHOI CHCTeMH
00po0ku HM(PpPoBUX 300paKeHb

[lepeBaxkHa OULTBIIICTD MAHMX, SIKI OOPOOIAIOTHCS CYy4acCHUMH iH()OKOMYHIKAIIHHUMH CHCTEMAaMH, €
rpadiyanmu. IcToTHA YacTka 3 HUX — HU(POBI 300paXKeHHs, SKi XapaKTePU3YIOThCs BETMKUMU oOcsiramu. Takum
YMHOM, BHUHHKAa€ T0oTpeda I1X MpeICTaBlICeHHS y KOMIIAKTHOMY BHIIISAL, L0 3a0€3Me4YUTh 3MEHIICHHS
HABaHTAXXCHHS Ha KaHaIW 3B’S3KY, ITIJBHIICHHS OIEPAaTHBHOCTI JOCTaBKH Ta CKOPOYEHHsI OOCATIB Iam’srTi,
HeoOXitHOT Ayt 30epiranHs naHuX. BupimeHHsM 1€l npobiaeMu € po3poOiIeHHs 3 BUKOPUCTAHHSIM 00’ €KTHO-
OpIEHTOBAHOI TEXHOJIOTI] aBTOMATH30BaHOI cHCTeMH OOpoOKM ImdpoBux 300paxens (ACO3), Ha erami
NPOEKTYBaHHS SIKOI IIOCTa€ akTyallbHa 3a/iada MoOYIOBH MoOejel MOBEIIHKH €K3eMIUIIPIB KJIaciB 00’€KTHO-
opieHTOBaHOTO MporpamHoro 3adesnedenns (OOII3) 3amisa yHUKHEHHS CHCTEMHUX Ta allTOPUTMIYHHAX MTOMHUJIOK,
a TaKOXX CKOPOYEHHS Jacy po3pobieHHs. Tox, Meta poOOTH momsarae B po3po0IeHHI MEeToja CHHTE3Y Moenen
CTaHiB MPOTPaMHUX 00’ €KTIB 00’ €KTHO-OPiEHTOBAHOTO MporpaMHoOro 3abe3neueHHst ACO3.

[Ipornec mobymoBu mozeni ctaniB mporpamuux 06’ektiB (MCO) OOII3, Buxonsun 3 ii cKiHUEHHO-
ABTOMATHOTO TIPEICTABICHHS, PO3TIISHYTO 3 MOTIIALY aOCTpaKTHOIO CHHTE3y CKIHYEHHOTO aBTOMaTa. Y poOoTi
BUKJaneHI ¥ oOOIpyHTOBaHI OCOONMBOCTI CHHTE3y CKiHueHHo-aBToMaTHOi MCO OOII3, mnobynosa
BiZIOOpa)KeHHsI, sSIKe BH3HAYa€ MHOXXHMHY KaHaJiB KepPyBaHHS KJIacy 00’€KTiB, Ta HOPSIOK IPHBEICHHS HOTO J0
AaBTOMATHOT'O BUJY, & TAKOX 1MOOY0Ba KAHOHIYHOI MHOKHHH TOJIIH 1 IX PeryJsipHUX BUPa3iB IS BiJOOpasKeHHS,

291

TexHika B CLICHKOTOCIIOIAPCHKOMY BUPOOHUIITBI, raJly3eBe MaiMHOOY IyBaHHsI, apTomatu3aiis, 2014, pur. 27

sKe BH3HAUa€ MHOXKHMHY KaHAJIB KepyBaHHs Kiacy mporpaMHHX 00’ekTiB. Ha OCHOBI OTpHMMaHUX pe3yibTaTiB
JOCTIKSHHS 3aIIPOIIOHOBAHO METOJ CHHTE3Y MOeNel cTaHiB mporpaManux 06’ extiB OOII3.

3anponoHoBaHUN MeTOX 3abe3nedye popmanizamniio IpoIecy BU3HAYEHHS CTaHIB Ta IX B3a€EMO3B’S3KIiB
y KUTTEBOMY LMKII ek3emiuripa kiacy OOII3, a Takox J03BOJISE 3MEHIIUTH TPYAOMICTKICTH TIpOLECy
PO3pOOKH IMHAMIYHOT KOMIIOHEHTH KoMIutekcHOT mozeni OOIT3 mix yac ii mpoeKTyBaHHS Ha JIOTTYHOMY piBHI.
nporpamHe 3aée3neyeHHsl, ABTOMAaTH30BaHA CHCTEMA, eK3eMILIAP KJIACy, 00’€KTHO-OPi€HTOBaHA MOJIeJIb,
CKiHYeHHO0-aBTOMATHA MOJeJb, MOBediHKA 00’ €KTa, CTaH 00’ €KTa

Onepxano 27.02.14

V]IK 681.513.5

b.M. I'oHyapeHko, I-p TeXH. HAYK

Hayionanvnuii ynisepcumem xapyo8ux mexHono2iu

JL.I'. BixpoBa, KaH/l. TeXH. HAYK

Kiposoepaocvkuil HayionanbHull mexHiuHull yHisepcumem

AJITOPUTM CHUHTE3Y ONTUMAIBHUX POOACTHUX
pPETYJISATOPIB

Posrisnaerbes 3a1a4a moOya0BH ONTUMAIBHOTO POOACTHOTO KEPYBAaHHS Y BUTJISIII 3BOPOTHOTO 3B'SI3KY
BiJl CTaHy JIIHIHHOT TMHAMIYHOI CHCTEMH, SIKE MIHIMI3y€ IHTErpabHO-KBAAPATHYHUN (QYHKIIOHAT [TPU HAHOLIbLI
HECIPUATINBUX 30ypeHHsIX cucteMu. OTpUMaHO OJHOIIapaMeTpHyYHe CIMEHCTBO MiHIMAKCHUX PEryJIsiTOPiB, IPH
AKX 3a/laHUi KPUTEPill He MepeBUIlye NEeSKOT0 TpaHMYHOro 3HadeHHs. OnThManbHe MiHIMakCHE KepyBaHHS
3HAXOJUTHCS IIUIIXOM IOIIYKY MiHIMaJbHO JIOITyCTHMOTO MOPOTOBOTO 3HAa4€HHS (PyHKLIOHATY 3a JONOMOTOIO
YHCETHHUX ITepaliifHIX METO/IB.
onTuMi3aniliHa 3aga4a, poéacTHiCTb, CHHTE3 PO0OACTHOIO peryiasaTopa, piBHsHHA Pikkarti, pyHknis

I'aminbTOHA, CHOJIyYeHA cHCTeMa, KpUTepiaabHa 3a/1a4a
B.H. I'onyapenko, A-p TexH. HAyK

Hayuonanvuwiil ynueepcumem nuuyesblx mexnonro2ui

JL.IT'. BuxpoBa, KaHJ. TexXH. HAYK

Kuposoepadckuii nayuonansHulil mexHuyeckuil yHugepcumen
AJITOPUTM CHHTE3a ONTHMAJIbHBIX POOACTHBIX PETYJISITOPOB

PaccmarpuBaercs 3a1a4a HIOCTPOSHUS] ONTHMAIILHOTO POOACTHOTO YIIPaBJIEHHs B BUIE 00paTHOM CBSA3M
OT COCTOSIHUSl JIMHEHHOW JMHAMHUYECKOM CHUCTEMBI, KOTOPO€ MHMHHUMHU3HPYET HHTErPaIbHO-KBAAPaTUUHBIN
¢yHKIIMOHAT TIpH Hambojee HeOIAaronmpHATHBIX BO3MYIICHMSX cucTeMbl. [loiaydeHo ogHOmMapaMmeTpuyeckoe
CeMEICTBO MHHHMMAKCHBIX PETYJSITOPOB, IPH KOTOPHIX 3aJaHHBIA KPUTEPUH HE MPEBBIIIAET HEKOTOPOTO
TPaHUYHOrO 3Ha4deHus. ONTHMaJbHOE MHHHMAKCHOE YIPABICHHUE HAXOJWTCS MyTEM IOMCKA MHHHUMAIbHO
JOIYCTHMOTO TIOPOTOBOT0 3HaYEHUsI (DYHKI[MOHAJIA [IPY IIOMOIIHM YHCIICHHBIX HTEPAlMOHHBIX METOJIOB.
ONTHMHU3ALNMOHHASA 32/1a4a, POOACTHOCTb, CHHTe3 PpPO0ACTHOro peryJaaTopa, ypaBHeHue Pukkarm,
¢bynxkuusa F'aMuiibTOHA, COeAUHEHHAS CUCTEMA, KPUTEPHAJIbHASA 3aJa4a

Beryn. binbmicte peanbHuX cucTeM abo 00'ekTiB KepyBaHHS (yHKUioHYe [1] B
yMOBax HEBH3HAYEHOCTIi, TOB'I3aHOI 3 HEJAOCTATHHOIO iH(MOpMAIliE€I0 TTPO O0'€KT KepyBaHHS,
HETOYHICTIO HOTr0 MaTeMaTUYHOI MOJIEINI, BUXIIHUX JaHUX 1 T.A. TOMy 3aBJaHHAM KepyBaHHS
o0'exkTamu, 1O (YHKIIOHYIOTH B YMOBaX HEBH3HAYCHOCTi, NPUAULLIACA 1 TPOJOBKYE
OpUAUIATHCS BelMKa yBara [2]. Y paHiit poOOTi po3risAaeThes 1 NPOMOHYETHCS PO3B’A30K

© Bb.M. I'onuapenxko, JI.I'. Bixposa, 2014

292

