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Abstract. The methods of synthesis of discrete signals are analyzed with the 
special cross-correlation properties: m- sequences, signals of Legendre, Barker, 
Paley-Plotkin, Gold, small and large set of Kasami. Comparative researches of 
properties of the formed discrete signals are conducted. Separate direction de-
velops in development of methods of forming of discrete signals, that is based 
on the use of algebraic and structural properties of circular shifts of group 
codes. It is shown that offered approach allows forming the great numbers of 
discrete sequences, ensemble and cross-correlation properties of that are set by 
the properties of the corresponding group controlled from distance, structural 
and cyclic. 
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1 Introduction  

The effective functioning of digital communication networks with providing plural 
access on the technology of code channel separation directly depends on ensemble, 
cross-correlation and structural properties of the formed discrete signals [1-3]. It is 
special it is important at the construction of perspective digital communication of fifth 
(5G) and sixth (6G) generation networks [4]. 

The perspective direction of researches is the development of methods of synthesis 
of discrete signals with the special correlation properties [5-30]. The values of lateral 
ejection of the function of correlation for such signals are determined by strict ana-
lytical correlations and directly related to structural and group properties of ensembles 
of discrete sequences [5-9]. In particular, such signals include [5–30]: m-sequences, 
Legendre, Barker, Paley-Plotkin, Gold signals, a small and large number of Kasami 



and many others. At the same time, the main disadvantage of such methods is the 
small power of the ensembles of the formed sequences. In this sense, the most prom-
ising methods are the synthesis of large ensembles of discrete signals with a multi-
level auto- and cross-correlation function [16]. 

In this paper, the analysis and comparative studies of methods of synthesis of dis-
crete signals with special correlation properties are carried out. Theoretically, synthe-
sis methods based on the cross-section of circular shifts of the group code are justi-
fied, which allow forming a set of sequences with predetermined distance properties 
and algebraically construct large ensembles of discrete signals with a multilevel func-
tion of auto- and cross-correlation. 

2 Analysis of the known methods of synthesis of discrete signals 
with the special correlation properties  

The most development to date was got by the methods of synthesis of discrete signals, 
based on the use of recurrent transformations and corresponding linear and nonlinear 
recurrent sequences [5-30]. Procedures of forming of such sequences easily will be 
realized with the use of the simplest switch charts with shift registers. 

Linear recurrent sequences are formed with the use of shift registers with linear 
feedback (LFSR) and at the corresponding choice of the function of feedback allow to 
provide the maximal period of the formed sequences [5-9]. In literature, such signals 
got the name of linear recurrent sequences of a maximal period (MLRS) or m- se-
quences. On their basis, many other classes of signals are formed: sequences of Leg-
endre, Paley-Plotkin, a Barker signal and many other. 

The results of a comparative analysis of some methods for synthesizing signals 
with special correlation properties are given in Table 1. The comparison was made 
according to the following indicators: the period length n  and the power  М  of dis-
crete signals, the maximum value of the lateral lobe module of the correlation func-
tion  .  

The analysis showed that the lateral ejections of the correlation function of the 
considered signals take finite, previously known values, which allows them to be used 
at various stages of digital communication, including for channel synchronization and 
in radio-location. The main disadvantage is the small capacity of the ensembles of the 
formed sequences. For example, the number of MLRS, Legendre, Paley-Plotkin and 
other sequences is determined by the number of irreducible polynomials (Euler func-
tion), which determine the rule for the formation of sequences. Improved ensemble 
properties are possessed by Gold's sequences, small and large sets of Kasami se-
quences. The power of the ensembles of such signals is significantly increased. The 
lateral lobes of the correlation function   for these sequences are also increased, but 

with an increase in the length of the sequences n  the loss in the correlation properties 
is insignificant. Therefore, the construction of large ensembles of discrete signals is a 
promising direction for further research. 



Table 1.       Ensemble and correlation characteristics of some discrete signals with special 
properties 

Signal class n  М   

m-sequences 
2 1m  , 

m Z   
(2 1) / 2m m   

1

2 1m
  


 

Legendre Sequences 
( 1)mn p  , 

,p m Z   
( 1) / 2mM p m 

1mp

n




  

Legendre sequences with 
2m  , Barker signals 

1p  , 

р = 3, 5, 7, 11, 13 

21 ( 1)

8 ( 1)

p p

p




 


 1 / p   

Legendre Sequences, 
2m   

1p  , p Z  , 
р  3, 5, 7, 11, 13 

21 ( 1)

8 ( 1)

p p

p




 


 1 / p   

Paley-Plotkin signals p , p Z   p  1 / p   

Gold signals 
2 1m  , 

2 1m p  , p Z   
2 1m   

( 1)/21 2

2 1

m

m






 

Gold signals 
2 1m  , 

2m p , p Z   
2 1m   

( 2)/21 2

2 1

m

m






 

Small set of Kasami 
2 1m  , 

2m p , p Z   
/22m  

/21 2

2 1

m

m
 



 

Large set of Kasami 
2 1m  , 

2m p , p Z   
/2 /22 (2 1)m m   

( 2)/21 2

2 1

m

m






 

 
The most important, in this sense, are methods based on the use of algebraic and 

structural properties of group codes. Thus, in [16, 29, 30], it was shown that the sub-
orthogonal discrete signals, the three-level Gold signals are a special case of n-level 
discrete sequences formed by the section of cyclic orbits of a group binary code, and 
can be analytically formalized using the mathematical apparatus of the theory finite 
fields and, in particular, the theory of rings of polynomials. 

3 Algebraic and structural properties of circular shifts of group 
codes 

The proposed approach to the formation of discrete signals with a multilevel correla-
tion function is based on the use of the algebraic and structural properties of cyclic 
orbits of group codes over finite fields, as well as the procedure for selecting the cor-
responding discrete sequences [8, 16]. Consider the algebraic structure of a finite field 
and the cyclic orbits contained in it. We will research the algebraic and structural 
properties of cyclic orbits of group codes to form discrete sequences with special 
properties. 



We fix a finite field  GF q , consider the vector space  nGF q  as a set of n - se-

quences of elements from  GF q  with component-wise addition and multiplication 

by a scalar. A linear  , ,n k d  code V  is a subspace  kGF q  in space  nGF q , i.e. 

nonempty set of n-sequences (code words) over  GF q , k  is the dimension of a linear 

subspace, d  is the minimum code distance (the minimum weight of a nonzero code 
word). A cyclic code is a special case of a subspace that has the additional property of 

cyclicity. Each vector from  nGF q  can be represented by a polynomial in a formal 

variable х of degree not higher than n – 1. The components of the vector are identified 
with the coefficients of the polynomial. The set of polynomials has the structure of a 

vector space, identical to the structure of the space  nGF q , as well as the structure 

of the ring of polynomials     1nGF q x x  . In the ring of polynomials, the multi-

plication over polynomials is defined:        1 2 1 21nx
p x p x R p x p x     , where 

 bR a  is the remainder of the polynomial a  divided by the polynomial b . The cy-

clic shift on  0,..., 1n  
 
elements in terms of polynomial algebra can be written 

as:  

    1nx
x p x R x p x 


     . (1) 

If the code words  , ,n k d  of a code over  GF q  are given in the form of poly-

nomials, then code V is a subset of the ring     1nGF q x x  . The code V  is cy-

clic if, along with the code word  С x  it also contains the polynomial  x С x . The 

only nonzero given polynomial  g x  of the smallest degree r n k   uniquely de-

fines  , ,n k d  the cyclic code over  GF q  and is denoted by the generating poly-

nomial, moreover ( ) ( )i

i

g x x   , where  i mGF q  . It is connected with the 

check polynomial  h x  by the relation     1ng x h x x   , or, equivalently, 

   1
0nx

R g x h x     . 

Consider the structure of a finite field  mGF q , as a set of polynomials of degree 

m  with coefficients from  GF q , i.e. polynomial ring structure 

    / 1mGF q x x  . This ring with modulo irreducible polynomial operations is an 

extended Galois field  mGF q . Such a field consists of a set of classes of conjugate 

elements  si q
 , 0,1,..., 1is m  , where im   is the smallest natural number, such that 

equality holds [8]: 



   mod 1im m
iq i q  . 

The algebraic structure of a finite Galois field is given in table 2. Each class of 
conjugate elements specifies (through the roots) the minimal polynomial  if x . The 

product of all minimal polynomials  if x  of a finite field  mGF q  defines the poly-

nomial 1( 1)
mqx   , i.e. we have the equality: 

   1

{0,..., 1} {0,..., 1}

( 1)
m

m m

q i
i

i q i q

x f x x 

     

     , 

where   is a primitive element of the field ( )mGF q , whence follows: 

     
0

j s
m

j q
j

j j s

LCM LCg f x xMx 


                
  , 

       
0

1 i s
mn

i q
i

i j i j s

x
h Mx LCM Lf x C x

g x


  

                   
  , 

where LCM is least common multiples. 

Table 2. Classes of adjoint elements and minimal polynomials 

Adjoint elements Minimal polynomials 

0      0
0 ( ) ( )f x x    

1  q  
2q

 
… 

mq
 

2

2

1

1

( ) ( ) ( ) ... ( )

( ) ( ) ( ) ( )

m

m

q q q

q q q

f x f x f x f x

x x x x   

    

       
 

… … … … … … 

i  iq  
2iq

 
… 

miq
 

2

2

( ) ( ) ( ) ... ( )

( ) ( ) ( ) ( )

m

m

i iq iq iq

i iq iq iq

f x f x f x f x

x x x x   

    

       
 

… … … … … … 

 
Let us consider the structure of the group  , ,n k d  code V  over  GF q

 
from the 

point of view of the cyclic properties of the sequences that form it. We will use the 



concept of a cyclic orbit V  is a set of sequences with elements from  GF q , equiva-

lent to each other with respect to the cyclic shift operation, i.e. many such: 

 0 1 1, ,...i i i
i nC c c c  ,  i

vc GF q
 
and  0 1 1, ,...j j j

j nC c c c  ,  j
vc GF q , 

that equality holds: 

               0 1 1 mod 1 mod 1 mod
, ,... , ,...j j ji i i

n n n n n
c c c c c c      ,  (2) 

for any  0,..., 1n   .  

Expression (1) using (2) is expressed in terms of polynomial algebra:  

     1ni j jx
p x x p x R x p x 


      ,  

  1
0 1 1...i i i n

i np x c c x c x 
    ,   1

0 1 1...j j j n
j np x c c x c x 

    .
 

Consider the set ( )nW GF q  of all n- sequences with elements from  GF q , 

which form the so-called "full code". The structure of a set is equivalent to a vector 
space  GF q  with componential addition and multiplication by a scalar.  

We divide the entire set W  into subsets of orbits 0 1, , , LV V V , each of which con-

tains a set of sequences equivalent to each other in relation to the cyclic shift opera-
tion. Thus, we obtain the decomposition of the vector space  GF q  into sets of non-

intersecting orbits (Fig. 1). In Fig. 1 , ,   0, , ,  1 , , ( )n
i j iS GF q i L j Z       is sche-

matically denoted by n- sequences as elements of the set W .  All  ,i jS   are grouped 

on the basis of equivalence in relation to the cyclic shift operation. Each group is a set 

iV , all elements of the set iV  form i orbit of a set. W . It is also obvious that each 

sequence ,i jS  can be represented in the form (2) as some sequence LC   in the nota-

tions introduced above. The power of the set iV  (the number of elements of the i  

orbit of the set W) is equal to iZ . Obviously, for a set W formed by n- sequences with 

elements from ( )nGF q , the power of the set iV  for an arbitrary 0,..., i L   does not 

exceed n, i.e. , 0,..., iZ n i L , the number of nonzero orbits L  is bounded below by 

the following value: 

 
1nq

L
n


 . (3) 



Under the zero is understood the orbit 0V , consisting of one zero sequence 
0,o zS  ( a 

sequence consisting of only zero elements  GF q ), the corresponding number of 

sequences of the orbit 0 1Z  .  

 

Fig. 1. A diagram of decomposition of vector space ( )nGF q  on the sets of not-intersecting 

circular shifts , 0,..., iV i L   

Analyzing (2) we come to the conclusion that each orbit contains n- sequences 
with a fixed weight (the cyclic shift operation does not change the weight of the se-
quence). At the same time, the code V does not contain sequences of weight less than 
d. Strictly speaking, the weights of the sequences that form the code V, are determined 
solely by the weight spectrum of code V.  

Suppose that the considered code V has a weight spectrum of the form: 

( )A w ,  0, , nw  , 

where ( )A w  is the number of code words of the V code with weight w . 

It is obvious that for  (n, k, d) code V the weight spectrum has the form: 

 

 ( ) 1, 0;

( ) 0, 1, , 1;

( ), , , ,

A w w

A w w d

A w w d n

 
    
  

 (4) 



i.e. nonzero components of the weight spectrum ( ) 0A w  ( except for one zero 

sequence (0) 1A  ) are concentrated in the weight range  ,...,W d n . 

Taking into account the above considerations, the diagram for decomposing the 

vector space ( )nGF q  into sets of disjoint cyclic orbits , 0,..., iV i L   is represented as 

a diagram in Fig. 2. 
  

1,1S ...

...

VL

V1

V2

Vi
W

1,2S 1,3S 1z,1S

2,1S ...2,2S 2,3S 2z,2S

...

1,iS ...2,iS 3,iS zi,iS

1,LS ...2,LS 3,LS 1z,LS

Vi+44,1+iS ...4,2+iS 4,3+iS ,1+4S
1+zi

1,jS ...2,jS 3,jS zj,jS Vj

...

V

1,0S V0,w=0

3,1S ... V3

V4

3,2S 3,3S 1z,3S

4,1S ...4,2S 4,3S 2z,4S

V55,1S ...5,2S 5,3S 2z,5S

Vi+11,1+iS ...2,1+iS 3,1+iS ,1+iS
1+zi

Vi+22,1+iS ...2,2+iS 2,3+iS ,1+2S
1+zi

Vi+33,1+iS ...3,2+iS 3,3+iS ,1+3S
1+zi

w=d

w=d+1

w ≠ 0

w ≠ 0

w ≠ 0

w ≠ 0

 

Fig. 2. The diagram of decomposition of vector space  ( )nGF q  on the sets of not-intersecting 

circular shifts , 0,..., iV i L  



Obviously, the «complete code» W is represented as a union of a finite number of 
disjoint orbit-sequences of fixed weight, equivalent to each other with respect to the 

cyclic shift operation. The code V as a subset of the space ( )nGF q  is the union of a 

finite number of orbits, and the weights of the sequences of the orbits are determined 
exclusively by the weight spectrum, i.e. relevant 0w  .  

The number of orbits of a fixed weight is also determined by the weight spectrum 
of the code, i.e. the number of sequences in these orbits. Thus, the number of orbits of 
a weight 0w   of a code V with a weight spectrum (4) is bounded below by an ex-
pression (by analogy with (3)): 

 
( )

( )
A w

L w
n

 . (5) 

So, the group code is uniquely defined by the leaders (representatives) of its cyclic 
orbits. 

4 Conclusions 

The efficiency of functioning of digital communication systems with the provision of 
multiple access on the technology of code division of channels directly depends on 
ensemble, correlation and structural properties of used discrete signals.  Promising in 
this sense are methods for the synthesis of discrete signals with special correlation 
properties, the magnitudes of lateral ejections of the correlation function of which are 
determined by strict analytical relations and are directly related to the structural prop-
erties of ensembles of discrete sequences. 

The analysis of methods of synthesis of discrete signals with special correlation 
properties has shown that application of formed sequences allows providing the set 
level of noise immunity of communication The lateral ejections of function of correla-
tion of discrete signals with the special properties take on final beforehand known 
values, that allows to use them on the different stages of digital communication At the 
same time, the main disadvantage of such methods is the low power of the ensembles 
of formed sequences. So, for example, the number of MLRS, sequences of Legendre, 
Paley-Plotkin of and other is determined by the number of irreducible polynomials 
that define the rule for the formation of sequences. The improved ensemble properties 
are possessed by sequences Golda, small and large set of sequences of Kasami. Their 
construction is based on the use of the developed mathematical vehicle of the theory 
of the finite fields and, in particular, the theory of polynomial rings, which allows us 
to connect the correlation properties of the formed sequences with the group and 
structural properties of signal ensembles. The most perspective in this sense are the 
methods of synthesis based on the cross-section of circular shifts of the group codes. 

Research of cyclic properties of group codes and presentation of them through the 
combination of circular shifts allowed to ground the rule of forming of discrete sig-
nals as leaders of corresponding circular shifts. Due to the cross-section of circular 
shifts, it is possible to form a set of sequences, the ensemble and correlation proper-



ties of which are determined by the distance, structural and cyclic properties of the 
corresponding group codes. The further researches can be focused on using in some 
different other areas [31-34]. 
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