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Isolation of the D-domain of Stability of Linear
Dynamical Systems with Fractional Order Regulators

In the article the solution of the problem of the selection of the region of stability of linear dynamical
systems with P1*D#- regulators a factor of fractional order is given. Using the D-split method, we obtain
analytical formulas that determine the limits of the region of stable stabilization of the "object" + "fractional-
regulator" system. The results obtained relate to the control system for biological purification of contaminated
water by active sludge. Some results of computational experiments are given, an estimation of fractional -
regulator efficiency is given. Further development of these results may be related to the search for both optimal
adjustment parameters and fractional orders of the diperegenerators included in the regulator, according to some
chosen optimality criterion.
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Boinenenne d-061acTH yCTOHYMBOCTH JIMHEHHBIX JHHAMHYECKHX cHCTeM ¢ Pl*D*-

peryjsitTopaMu ApOOHOI0 MOPSIAKA
B crarbe maercst pelieHne 3alaud BBIAEICHHS OONACTH yCTOHUMBOW crabuimsanuu (yCTORYHBOCTH)

NMHEHHBIX JMHAMHYECKHX cucteM ¢ Pl*D*- perymasropamu apoGHOro mopsaka. Mcrmomssys merox D-
pa3OueHns, TONydYeHbl aHATUTHYECKHE (OPMYJIBI, OMNpENeISIoIUe MpeAeibl  00NacTH  YCTOHYMBOM

cTabunmsanuyn cucTeMsl "06bekT" + "npobHbii Pl*D*- perynarop”. IlomyueHHBIE pe3ysbTaTh KacaloTcs
CHCTEMBl aBTOMATHYECKOTO YIIPABICHHS OWOJIOTMYECKOH OUYMCTKOH 3arps3HEHHBIX BOJ AKTHBHBIM HIIOM.
[IpuBoasATCS HEKOTOpBIE PE3YNbTATHl BBIYMCIUTENBHBIX AKCIICPHMEHTOB, JIAeTCSd OIECHKAa 3(P()EKTHBHOCTU

npo6roro P1*D* - perynsropa.

006J1aCTh CTA0MIM3ALUM, APOOHBLIE NPOM3BOAHBIE, APoOHbIe uHTerpanbl, Pl ‘D# -peryJisiTop ApoGHOro
nopsiaka, Pl- peryastop, merox D-pa3ouenusi, npeodpa3osanue Jlamiaca qis quepunrerparopa

Introduction. From the beginning of the development of the theory of integro-
differential calculus of fractional order [1], its first applications in control problems appeared
only about 50 years ago [2]. It has been shown that fractional calculus becomes an effective
tool for describing numerous dynamic systems. The classical results of the PID control theory
have spread to the fractional order controllers, which denote how PI*D#, where A and p are
the orders of integration and differentiation of the error signal, with orders A and p may have
valid non-integer (fractional) values [3,4].
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Statement of the problem.. The well-known problem of the allocation of the global
region of stability (D-split method) required the distribution of fractional dynamic systems in

the space of the parameters of the adjustment Pl “D* -regulator, depending on the value of
the orders of powers A and p.

Research methods. Analytical studies and computational experiment in the
MATLAB environment have been conducted.

Statement of the objective: The purpose of the article is to study the possibility of
applying the D-split method to automatic control systems for process control with fractional
controllers.

The main material: A fundamental operator D/ is often referred to as a
differintegrator.

d’ /dt’,  y>0,
D/ =41, 7 =0, (1)

[[@o)7, y<o,

where 7 — fractional order;
a — constant associated with the initial conditions.
More fundamental is the definition of Grunwald-Letnikov for the order y according to

which
[(t-a)/h] .
aD{f(t)=Lirr3hi7 > (—1)1[7_]f(t— jh) (2)
- =0 J
where (q: : Iy +9) ____, I'(x) —gamma Euler's function, h>0 - gain of the
1) TU+Dr(y—-i+1)

time coordinate, f(X) — the function to which the operator of the differential integration is
used, [-]- means an integer part of the number. This definition shows that integer derivatives

require the use of finite series, and fractional derivatives — an infinite number of members of a
series.

It can be proved [5] that the Laplace transform, which is the basis of the definition of
the concept of a transfer function, for the differintegrator has the form

LoD (O} = [e,Dr F et =5 F(9)- > 8/ (-D,D i) O

where F(s)=L{f(t)} — ordinary Laplace transform function f (x), n - an integer that

satisfies the condition n—1< y <n. Note that if D/ 17*f (t)‘t_O =0, j=0,12,..,n-1,

then from (3) it follows that L{OD{f(t)} =s"F(s). Systems with fractional orders have

transfer functions of arbitrary real order.
Consider the transfer function of fractional order, which is given by the following
expression

3 b.s#
G(s) = N(s) b,s” +b, ;s +..+bs +hs ; T (4)
D(s) a,s" +a,,8" +...+a,5" +a,5 Zn:a.s"’i
i=0
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where a, b, B >8.,>.>B8>520, a>a,,>.>0>aq>0 — arbitrary valid
numbers.

In the time domain, the transfer function corresponds to an inhomogeneous differential
equation of the fractional order of the form

iapf‘i y(t) = ibiD/’iu(t), )

where y(t) —exit, and u(t) - input of the control object, , D/ - differintegrator.

In the general structure of the closed control system of fractional order with one input
and one output is presented Yy(t) - output, r(t) — input request signal, e(t) — error
(mismatch), u(t) — control signal, G(s) - transfer function of the control object, C(S) -
transfer function of the fractional order controller.

Transmission function of the fractional P1*D* _controller has the form
C(s) =k, +kis™* +kys*, (6)
where A u p — fractional orders whose values belong to the region (0,2), Koo Ko Ky =

adjusting parameters of the regulator.
In the time domain, the transfer function (6) corresponds to the type control
u(t) =k, -e(t) +k; - (, D “e(t)) +k, - (, De(t)). (7)
where — D/ differintegrator.
The task is to find the area of stability with allowable values of the settings k, k;. k,

fractional P1*D* — controller, which stabilize the control object. This is important when
designing P1*D* — controllers, and then in the future and to find optimal regulators on the
found parametric area of stabilization by the chosen criterion.

Transmission function of the system "object + regulator” in Fig. 1 has the form

W(s) = C(s)G(s) _Q(s), (8)
1+C(s)G(s) P(s)
where Q(s) = Z[kpbjs“ﬁj +kb;s? +kybyst } , (9)
=0
P(s)= Y [ a,s""™ +kb;s™ +kbys™ +kybs™ 7 | (10)
j=0

The area of stable stabilization, which we denote through S, in the space of parameters
is subject to belonging to the left half-plane of the complex S - plane all real parts of the roots
of the characteristic quasipolynomial P(s), which for convenience will be presented in the

form
n
P(s)=Y p;s" = p,s™ + P, yS™ 4.+ Pis® + pys® (11)
j=0
where g; —ordered fractional orders of powers, and moreover q, >, ,>..> 0y, p; -
coefficients determined by the factors of the transfer function of the control object and the
parameters of the settings koo Ko Ky fractional P1*D* - regulator.

To select the region of stable system stabilization (control object with the controller)
we use the D-split method, the parameters space [6].
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Recall that according to this method, the boundary between the areas of stability and
instability in the space of the configuration parameters is three parts: =T+, +T.

Constituent I, is determined from the condition of intersection of the real root of the
characteristic equation of the imaginary axis s - plane with s =0. That is, the component T,
is found by way of substitution s=0 in the equation P(s)=0, where P(S) which is
determined by the equation (11). It follows that can be determined from the condition

P, =0, if the value of the smallest order ¢, equals 0, i.e. with s* =1. If g, =0, i.e. $© #1,
then the boundaries T, does not exist.

Constituent T, is determined from the condition of intersection of a pair of complex
conjugate roots of the imaginary axis at s = jw, Where j= J-1 — imaginary unit. So, in this

case, quasipoline (11) becomes an unstable and valid and imaginary part of the equation
P(jw) =0 begin to equal zero at the same time.

Constituent I"_ is determined by intersection of the real roots of the quasi-polynomial
(11) imaginary axis at and can be determined from the condition p =0.

Applying these preconditions to the investigated system "object + regulator” and
analyzing the characteristic quasipolin (10), we come to the conclusion that the components
I, and T the boundaries of the stability zone are straight lines:

_ B _
T, - line: k=0, mpus® =1
HE ICHYE, TIpU s 21,

kd=0, npu (an:ﬂn) abo (an>ﬂn i/u>0(n_ﬂn)!
T, —line: )y —_a /b, npu (o, > B, iu=a,-p),
HE iCHYE, npu (o, > f, iu<a,—pf,).

To build a component T', substitute s = jo into the equation P(s) =0, where P(s)
— quasipolin (10). Then we will get

P(jo) =3 a(jo)" +k;b,(jo) ™ +kby(jo)" +kib,(ja) " |= j
j=0

=Re{P(jw)}+ j-Im{P(jw)}=0,
where Re{P(jw)} and Im{P(jw)} mean respectively the actual and imaginary parts
of the quasipolin P(jw) .

For further transformation of the expression (12) we recall that this is not an
integer degree of complex number (o + jw)” can be calculated by the formula Muavr-Laplace

(o+jo) = (62 + a)z)yl2 [COS(7¢7)+ jsm(ﬂ”)] (13)
where ¢ =arctan(w/ o), o — real part, @ —imaginary part and y — fractional order

of a complex number.
Expression j”, which is present in the equation (12), can be presented according to the

formula (13), so
. T .. T
7'=cos| —y |+ jsin| =y |- (14)
‘ (zyj . (2yj

Further, equating to zero the real and imaginary part of the equation (12), taking into
account the formula (14), we will get
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Re{P(jo)} = k,Ry, (@) + KRy (@) + Ky Ryy (@) + Hy (@) =0, 15)
Im{P(jo)} =k R,,(®)+kRy (@) +k,Ryq (@) + H, () =0,
where R () =3 b0 cos[%(ﬂJr ﬂj)j, :

j=0

R, (@)= ibja)‘“”ﬂj cos(%(/l +y+ﬂj)j’ H, (@) = iajaﬁ”ﬂ cos(%(/l +a,.)],

j=0 j=0

R,, (@) = ibjaﬁ*ﬁi sin(%(ﬂ + ﬂj)], R, (®) = zn:bja)ﬁi sin(%ﬂjj,
j=0 j=0

R, (@) = ibjw“”*ﬂi sin(%(i +u+ﬂj)), H,(w) = zn:aja)““" sin[%(ma,-))-

j=0 j=0
The system of linear equations (15) contains more unknowns (kp,ki,kd), than the

number of equations, one of the parameters of the system can be arbitrarily chosen for its
unambiguous solution. If as a parameter, choose a coefficient Ky then the system (15)

becomes a system of linear algebraic equations of the second order with respect to unknowns
k; and k,, the solution of which has the form

=A@y Ad@) (16)
Aw) A(w)
A, (@) = Ryy (@)H, (@) = Ry (@)H, (@) +K, (Rig (@R, (@) = Ry (@) Ry (@)
Ay (@) =Ry (0)H (@) — R (0)H, (@) + kp (Rlp (@)R,; () - Ry; (@) R2p (a))) ' (17)

A(@) = R (@)R,g (@) — Ry (@) Ry () = o™ sin [% (A+ ﬂ)j(Rﬁ () +R;, ((0)) '

Note that for fractional PI* - regulator (k, =0) system (15) has a single solution
k :Ap(a))’ ki:Ai(w);
" Ao) A(w)
A, (@) =H, ()R (@) - Hi(@)Ry (@) Aj(@) = Hy(0) Ry, (@) —Hy(0)Ry, (@)

(18)

0 =Ry (R (0) =R (@R (0) = ' sin| 32| (Ro()+ Ro(ed)- (19

We now apply these results to highlight the stability of the biological control system
for contaminated water by active sludge with fractional P1*D* - regulator. By the assumption
that the kinetics of the growth process of biomass is described by the Mono equation [7], in
work [8] the linearized model of the bioelectric system "aerotank + sedimentation tank" was
obtained in the form of a model with one input and one output.

% _ AX®+bu®), V() =% =c"X(1)., (20)

where x(t) = (x,(t), X, (t), x3(t))T — state vector in which x,(t), x,(t) — respectively, the
concentration of biomass and substrate in aerotanks, x,(t) — the concentration of recirculating
biomass from the settling tank to the aerosol bioreactor, u(t) — single-speed control function-
speed of dilution (analogue of volume flow rate), y(t) — the observed output of the system is

the concentration of the substrate.
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System matrix A and vectors b and c are defined as follows

all a12 a13 bl 0
A=|a, a, ay|® b=|b |" c=|1] where
a‘3l a‘32 a‘33 b3 0
X, . X; .
a'l,l = /umax P (1+ r)u ! al 2 = /umaxks —*2’ a1,3 =ru,
K, + X, (kg +X3)
2 X, MoK X . B
a2’1 — max — max " 'S e _ (1+ r)u , a2’3 — 0’

Y ks+x;" Be2 = Y (ki +X3)
a,, =(1+ru’, a,,=0, a,;=—(f+nu",
b =—1+r)X +rX, b,=—1+r)X,+5S,, by=—(8+r)x;+1+r)X -
It is marked here: u* — nominal control given, x* = (x;,x;,x;)" — the corresponding
equilibrium state vector calculated for it; 4 . — maximum specific growth rate of biomass; k,

— saturation constant, determined experimentally; S,, — concentration of the substrate in the
inlet stream; Y — the factor of output (profitability) of biomass; r,s - coefficients that
determine respectively the ratio of the recirculation flow and biomass waste stream to the
input stream.

Numerical simulation of a controlled biocleaning system was carried out at the
following output data: s =200 [mg / (I, Y =065, u,, =0.15 [h™], ke =100 [mg / 1],
r=06, g=02,u =005 [hY], t, =0, T =1 [h], vector of the initial state of the system (20)
relied on equal x° = (x/,x7,x3)" = (286, 17, 568)" [mg / I]-

Note that the vector of the equilibrium state of the system (20) with this data was
calculated as the solution of the corresponding system of nonlinear equations of the third
order and equaled x* = (x;,x;,x;)" = (285, 15.38, 570)" .

In frequency domain model (20) can be presented in the form

Y (s) =G(s)U(s),

where U (s), Y (s) — Laplace transforms according to input and output;

G(s) — transfer function of the control object.
cladi(SE-A)D _ ps’+pstp . (21)

det(sE—A)  s°+@,5°+0s+0,

Here through adj(sE — A) the matrix attached to the matrix is indicated sE - A, and
the coefficients p,, g, polynomial numerator and denominator are calculated by the formulas

Po = bzanass - b1a21a'33 - b2a13a31 1 Op = Q1285833 + 843858y — 81185833,
P = b1a21 - bza'u - b2a33’ Oy = 4185, 843853 + 85,853 — 383 — A1p8y> (22)
P, =D, O, =-a;—a, —asy:

If control u(t) in the time domain construct in a fractional class PI*D* - regulators

of the form (6)

G(s)=c' (sE - A)_lb =

u(t) =—(k, - Y(0) +k; (4D y(®)) + ks - (,DF Y (1)) ) (23)
then the transfer function of the "biocleaning™ + "regulator” system will be determined by the
expression W (s)=Q(s)/P(s), where Q(s)=C(s)G(s), P(s)=1+C(s)G(s), C(s) -
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transfer function of the fractional controller, determined by the formula (6), G(s) — transfer

function of the control object, calculated by the formulas (21), (22).
To determine the range of valid values for the configuration parameters k, KiK

fractional P1*D* - regulator, which stabilizes the work of the bio-treatment system, uses the
calculated formulas (16), (17) i (18), (19), that describe the boundaries of the stability regions
of the system with a fractional controller. Computational experiments were carried out in the
MATLAB mathematical system environment. Below are some results from computational
experiments.

At fig. 1 in the parameter space Z ={kp,ki} the global region of stability (shaded

area) of a bio-waste fractional system is presented P1” - regulator at 1 =1, that is when using
the classic PI -regulator (7 , I, —the boundaries of the area of stability).

6000

4000

2000

0 :
-0.1 -0.08 X -0.06 -0.04 -0.02 0
I k
{ P

Figure 1 — Global region of system stability with P17 - regulator at A =1

In fig.2. the areas of stability of the system of bio-purification with fractionation P1” -
regulator are constructed at different values of the order of the differintegrator. Here, the areas
of stability are limited to the bottom of the abscissa, and on the top — the curve that matches
the value of the order of the parameter. From the graphs it can be seen that with increasing
order, the region of stability of the system also increases.

Then studied areas of stability of the system with fractional P1*D*-regulator. In fig. 3

in the parameter space Z = {kp,ki,kd} The system stability zone is depicted with P1*D*-

regulator for fractional orders 21=0.7, x=0.1. In this figure, the sections of the stability

region are represented by planes perpendicular to the coordinate axis. The cross sections are
closed shapes whose areas increase as the setting parameter increases.
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Figure 3 — Global areas of stability of the biocleaning system with 3 P1 *D* -regulator at 2 =0.7, 1#=0.1

k.

Similar areas of stability were obtained with other values of fractional orders A and p.

Conclusions. On the basis of the D-split method, analytical expressions were
obtained, which describe the boundaries of the global region of stability of linear dynamic
systems of fractional order of type "input-output" with fractional P1*D# -regulators. The
stability areas are built on the basis of computational experiments in the space of the
parameter settings for fractional P1*D* - regulators for fixed orders of diereintegrators in the
regulator. An appropriate algorithmic software is developed.
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Bunisienns d-o6acreii criiikocTi JiHIiTHUX TUHAMIYHEHX cHcTeM 3 Pl*D*-peryjasTopamMu

APOOOBOr0 NMOPSAAKY

B crarTi maethes po3B’SI30K 3aBIAHHS BHIIICHHsSI 001acTi CTiiiKkol cTabimizarii (CTIHKOCTI) MiHIHUX
juHaMivEEX cucteM 3 P1#D*- perymaropom apoGoBoro mopsjaky. BukopucToBylounm meron D-pos6uTTs,
OTpPUMaHI aHANITH9HI (OpPMyIH, IO BU3HAYAIOTH MEXi OO0JAacTi CTiiikoi crabimizamii cucremu "ob'ekt” +
"NpoOOBHii - perysiTop” CTOCOBHO KepyBaHHsI O10JIOTYHHM OYMIIEHHSIM 3a0pYAHEHHX BOJ aKTHMBHHUM MYJIOM.
HaBopsThes esiki pe3ysibTaT OOYUCIIOBAJIbHUX €KCIIEPUMEHTIB, MA€ThCs OIIHKA e(DeKTHBHOCTI APOOOBOTO -
peryusropa.

Ha ocnoBi meroxy D-po30uTTs oTprMaHi aHaNITHYHI BUpPA3W, sIKi OMUCYIOTh TPaHUI TI00anbHOT
0071acTi CTIHKOCT] MiHIMHKMX AMHAMIYHHX CHCTEM APOOOBOro MOPSAKY THIY "BXig-Buxin' 3 apobosumu Pl ‘DH
-perynsitopamu. O6nacti CTifiKOoCTi MOOymOBaHI Ha OCHOBI OOYHCIIOBAJIBHUX EKCIIEPUMEHTIB B MPOCTOPI
napameTpiB HanalmTyBaHHs apoboBux Pl ‘D -perymsTopiB npu (iKCOBaHMX TMOPSAKAX TU(EPIHTETPATOPIB B
CKJazni perymsaropa. Po3poOieHe BilMOBiIHE aNTOPUTMIYHO-TIpOrpaMHe 3a0e3mnedeHHs. [lomanpir qoCiiHKeHHS
MOXYTh OyTH TMOB'S3aHI 3 TIOIIYKOM SIK ONTUMAaJbHUX TapaMeTpiB HAJAIITYBaHHS, TaKk 1 JPOOOBUX IMOPS/IKIB
JudepiHTerpaTopis, M0 BXOSITh B PETYJISATOP, 3T1THO 3 JSSIKMM 00paHUM KPUTEPIEM ONTHMAIBLHOCTI.
obsaacTh cradinizanii, 1podoBi moxiaHi, APodosi inTerpanu, Pl ‘DH -peryJsitop ApodoBoro nopsiaky, Pl-
peryJsitop, metoa D-po3ouTTs, meperBopenns Jlamiaca nist audepinrerparopa

Opneprxano 21.11.17
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