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QUASIPERIODIC S O L U T I O N S  O F  V A R I A T I O N A L  PROBLEMS 

O F  M O T I O N  IN A C E N T R A L  F O R C E  F I E L D  

B. N. Kiforenko and V. V. Goncharov UDC 519.95 

A method is proposed for computing nearly optimal trajectories of dynamic systems with a small parameter 

by splitting the original variational problem into two separate problems for "fast" and "slow" variables. The 

problem for "fast" variables is solved by improving the zeroth approximation - the extremals of the linear- 

ized problem - by the Ritz method. The solution of the problem for "slow" variables is constructed by 

passing from a discrete argument - the number of revolutions around the attracting center- to a continuous 

argument. The proposed method does not require numerical integration of systems of differential equations 

and produces a highly accurate approximate solution of the problem. 

Analysis of optimal motions with constraints on power consumption [3] in a Newtonian force field requires solving 

variational problems on very long intervals of the independent variable (time), which exceed by a factor of tens or often even 

hundreds the time of one revolution around the attracting center. The solutions of variational equations of this kind are 

usually computed by numerical integration of the equations of motion, which involves considerable difficulties due to error 
buildup [2]. 

The presence of "fast" and "slow" variables in the equations describing this motion has led to the development of 

various approximate solution methods. The currently available results have been generalized in a number of monographs (see, 

e.g,. [1, 3]) to provide a qualitative picture of the structure of optimal trajectories and to estimate the efficiency of optimal 

controls. This information enables us to construct curves in the state space which satisfy the boundary conditions and can be 

used as the zeroth approximation for the solution of the variational problem. In this paper, we describe a method for comput- 

ing optimal multi-revolution trajectories which improves the zeroth approximation without numerical integration of the 

equations of motion. 

The computation of the optimal trajectory is divided into two variational problems. The first, "inner" problem (in the 

sense of the structure of the computer algorithm) computes the transition trajectory between near orbits during a single 

revolution around the attracting center. The "slow" variables change insignificantly in the process. This is a consequence of 

the specific features of motion with power consumption constraints [1, 3]. Without constraints on the main control functions 

[3], we can find a nearly optimal solution of the first problem by the method of state-space variation using the equations of 

motion only to compute the control functions and the functional increment in each revolution. The second, "outer" problem 

determines the dynamics of "slow" variables as a function of the number of revolutions n around the attracting center. Noting 

that the number of revolutions is very large, we introduce a continuous independent variable v that equals n on every integer 

value. In this way, we approximately replace the determination of functional dependences of "slow" variables on n with 

determination of functional dependences on v and solve the problem using the necessary condition of optimality of classical 
variational calculus. 

To construct a solution of the variational problem by the proposed method, we use the equations of motion of the 

two-body problem in osculating variables. In this case, the right-hand sides of the differential equations are linear with 
respect to the components of the perturbing acceleration vector a: 
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dx/d~., = [ (x,  v) a. (1) 

In system (1), x is the vector of osculating elements, v is the true anomaly. The specific forms of the system (1) for various 

systems of osculating elements are given in [5]. The main variational problem of motion with power consumption constraint 

involves determining the perturbing acceleration a(t) and the trajectory x(t) that correspond to the transkion from a given 

initial manifold ~,o(x(t0)) = 0 to the prescribed final manifold ~pl(X(tl)) = 0 with a minimum value of the functional 

I = ~ a S (T) d'~. 
to (2) 

For many problems in mechanics, the manifolds ~P0 and ~o 1 are quite far from one another in the space X of osculat- 

ing elements even with very small perturbing accelerations a [3]. This leads to long transition times T = t 1 - t o and slight 

changes in the osculating variables during one revolution around the attracting center. Since fix, v) is a periodic function of 

the true anomaly v, the motion is quasiperiodic with a slowly varying period T r. 

The transition trajectory x = x(v) on the interval v E [v~, v k + 2~r] is given in the form 

x = x (oh) + ~ (v) + ;  (v, c). (3) 

Here ~(v) is the solution of the variational problem minimizing the functional (2) on a particular revolution, 

s ..t- T,~ 

A J h =  ~" a~('0d'r, 
tk  (4) 

given the initial and final positions of the imaging point in the space X: X(Vk) and x(v k + 270. This solution is constructed 

using the system (1) which has been linearized to allow for the smallness of the perturbing acceleration a: 

d~/dv : t (x (vk), v) a (5) 

The Euler equations of the variational problem (4), (5) are integrated in elementary functions [6]. The choice of an arbitrary 

continuous differentiable function ~'(v, c) is constrained by the condition ~'(v k, c) = ~(v k + 27r, c) = 0 for any vector of 

minimizing constants c. The function x(v) defined by (3) is substituted in the differential equation (1). The resulting system is 

linear in the components of the vector a and it is used to compute the control a(t) that ensures motion along the chosen 

trajectory (3). The functional increment AJ k computed from (4) is then minimized numerically as a function of the vector c. 

Combining the analytical solution of the linearized variational problem (4), (5) with the Ritz method idea of direct 

minimization of the functional (4), we obtain the solution (3) of the original problem (1), (4) in terms of elementary func- 

tions, which in general can be made as close as desired to the optimal solution. Note that this solution is obtained without 

numerical integration of the equations of motion and the associated system: the computer has to calculate only the functional 

increment AJ k. 

The proposed procedure finds the functional increment AJ k as a function of the initial state x k = x(vk) and the 

osculating vector increment Ax k = x(v k + 270 - x(vk). The "outer" optimization problem now reduces to determining the 

dependence of the osculating variables on the revolution index n, x = x(n), that satisfies the given boundary conditions 

~0(x(0)) = 0, ~l(X(N)) = 0 and minimizes the functional (2): 

N 

J = ~ AJn (xh, Axe). (6) 

The minimization of the function (6) through an appropriate choice of the dependence x(n) by dynamic programming 

and even more so by direct enumeration involves very large speed and memory requirements for large N. To reduce these 

requirements, we replace the minimization of the sum (6) with an approximate variational problem of finding the function 
x(p) of the continuous variable p that satisfies the same boundary conditions as x(n) and minimizes the functional 
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