В.С. Ивашко, проф., д-р техн. наук, В.К. Ярошевич, проф., д-р техн. наук, Белорусский национальный технический университет, г. Минск, Беларусь П.Г. Лузан, доц., канд. техн. наук, Г.Н. Мдзинарашвили, инженер Кировоградский национальный технический университет

# Упрочнение быстроизнашивающихся деталей почвообрабатывающей техники

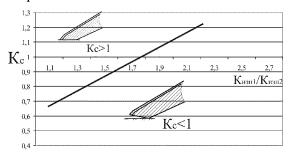
Дана краткая характеристика новых материалов и методов упрочнения быстроизнашивающих деталей рабочих органов почвообрабатывающей техники. Рассмотрены такие прогрессивные методы формирования требуемых свойств износостойкого слоя как метод поперечно-клиновой прокатки, электроконтактного припекания лазерная и микроплазменная обработка.

быстроизнашивающиеся детали, почвообрабатывающая техника, новые материалы и методы упрочнения, метод поперечно-клиновой прокатки, электроконтактное припекание, лазерное термоупрочнение, микроплазменного оплавления

Введение. Одним наиболее перспективных ИЗ методов износостойкости быстроизнашивающихся деталей почвообрабатывающей техники является формирование на ее рабочих поверхностях защитных слоев с использованием специальных материалов, технологий обработки, способов упрочнения (закалки, напыления, порошковых материалов, газотермического припекания лазерной. микроплазменной обработки), для повышения физико-механических поверхностей, которые определяет эксплуатационные характеристики создаваемых изделий.

Наиболее перспективными и доступными материалами являются стали пониженной прокаливаемости. Из технологий порошковой металлургии для нанесения защитных покрытий наиболее эффективным процессом является электроконтактное припекание. Технология формирования защитных слоев с использованием концентрированных потоков энергии основана на возможности, в первую очередь, создавать на малом участке поверхности высокие плотности теплового потока, необходимые для интенсивного нагрева и быстрого охлаждения нагретых поверхностей.

**Основная часть.** В работе [1] установлено, что при измельчении различных сельскохозяйственных культур во избежание быстрого затупления ножей измельчающих аппаратов необходимо обеспечить своевременное поочередное удаление режущих зерен износостойкого покрытия. Этот эффект достигается с помощью использования упрочняющего материала с различными размерами структурных составляющих.


Одним из прогрессивных методов формирования требуемых свойств износостойкого слоя на рабочей поверхности детали является метод поперечно-клиновой прокатки (ПКП) [2], который позволяет наряду с увеличением коэффициента использования металла, производительностью труда, повысить прочностные характеристики поверхностных слоев.

Методом ПКП могут обрабатываться практически все конструкционные стали.

Одной из освоенных в промышленности технологий ПКП деталей является зуб бороны.

Обеспечение требуемого соотношения величин несущего и упрочненного слоев и их износостойкостей позволяет сохранять в процессе изнашивания значения геометрических параметров (рис. 1), которые влияют на энергетические и агротехнологические показатели почвообработки [3].

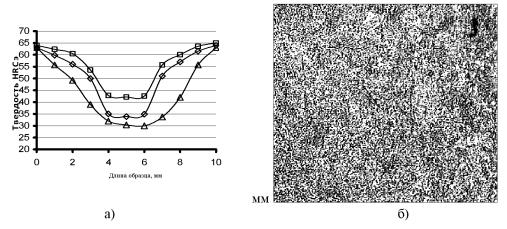
Это соотношение связано с условиями эксплуатации; типом почвы; удельным давлением, воздействующими на деталь, характером его распределения; геометрическими параметрами.



толщина детали S=12 мм, толщина упрочненного слоя  $\rho_1$  =2 мм;  $p_1^{\text{max}}$  =2\*10<sup>-2</sup> МПа,

$$p_2^{\text{max}} = 0.5 \text{ M}\Pi a, K_{1,2} = 2*10^{-3} \frac{M\Pi a}{MM}$$

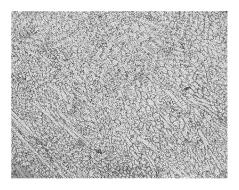
Рисунок 1 - Влияние соотношения износостойкостей несущего и режущего слоев на коэффициент самозатачивания  $K_{\rm c}$ 

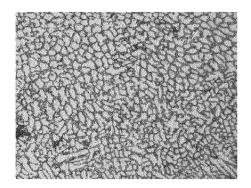

Для заданных параметров детали и условий эксплуатации выгодное формообразование возможно при соотношении износостойкостей упрочненного и несущего слоев не менее 1,7. Достичь подобных показателей при применении сталей пониженной прокаливаемости (например 60ПП) возможно при интенсивном охлаждении (спреерной закалке).

Распределение твердости по глубине и микроструктура закаленной стали ПП60 представлена на рис. 2.

Структура поверхности закаленных образцов: мартенсит, твердостью –  $56...65 \ HRC_{\circ}$  с пятнами троостита твердостью -  $62...64 \ HRC_{\circ}$ .

Среди методов порошковой металлургии значительное место занимают процессы припекания порошков[4]. Суть данной технологии заключается в нанесении на поверхность детали слоя износостойкого порошкового материала и последующем их нагреве до температуры, при которой происходит спекание порошка и образование прочной диффузионной связи его с деталью. Наиболее эффективным является электроконтактное, которое позволяет применять давления (на 2-3 порядка выше, чем при индукционном спекании), а скорость нагрева может достигать нескольких тысяч градусов в секунду.


Данная технология применяется при упрочнении дисковых ножей почвообрабатывающих, строительных и других технологических машин, которые должны иметь незатупляемую, износостойкую режущую кромку.




а) при охлаждении; б) характерная микроструктура поверхности, после закалки на максимальную твердость

Рисунок 2 - Распределение твердости по глубине

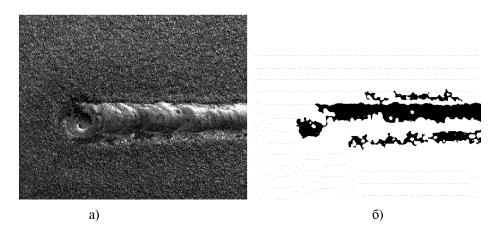
Технология формирования защитных слоев с использованием концентрированных потоков энергии основана на возможности, в первую очередь, создавать на малом участке поверхности высокие плотности теплового потока, необходимые для интенсивного нагрева. При воздействии на металлическую поверхность излучение частично отражается от нее, а остальной поток проникает на небольшую глубину, что позволяет обрабатывать детали машин с небольшим объёмным разогревом. Наилучшие результаты по формированию износостойких покрытий достигаются в результате применения самофлюсующихся материалов на основе Ni (с добавлением карбида вольфрама WC) (рис. 3) [5].





a-20 мкм, 6-50 мкм)  $\times 100$ 

Рисунок 3 - Микроструктура образцов после микроплазменного оплавления нанесенного износостойкого материала с различными размерами структурных составляющих


Как видно из рисунка 3 структура покрытия состоит из твердых мелкодисперсных включений, равномерно распределенных в пластичной, но достаточно прочной матрице (4000 — 4500 МПа), поскольку именно матрица определяет механические свойства покрытия, его сцепление с основой.

Основным преимуществом процесса лазерного термоупрочнения, определяющим его место среди широкого ряда методов поверхностного упрочнения, является возможность концентрации в локальной зоне поверхности высоких плотностей мощности. Это позволяет достигать сверхвысоких скоростей нагрева,

охлаждения тонкого поверхностного слоя и обеспечивать формирование за счет этого слоев сверхбыстрой закалки с повышенным комплексом свойств за счет высокой степени метастабильности структуры и проводить локальную обработку только рабочих поверхностей деталей без значительного их объемного разогрева.

Для предварительной оценки процессов лазерного и микроплазменного оплавления покрытий разработаны математические модели динамики распределения температурных полей тепловых процессов при обработке деталей с нанесенным композиционным материалом (на примере самофлюсующихся сплавов с 25 карбида вольфрама) под влиянием движущихся источника нагрева лазерного луча и микроплазменной дуги, что позволяет предварительно рассчитывать временя прогрева детали на требуемую глубину

Для наилучшего оплавления нанесенных износостойких покрытий или микроплазменной обработки необходимо строго применением лазерной контролировать скорость перемещения луча (дуги) и качество оплавленной поверхности. Для реализации данного технологического приема разработана программа визуализации поверхности обработки детали в системе Microsoft Visual Studio 2005 на языке С# (Си Шарп) при лазерном или микроплазменном ее оплавлении, которая с помощью визуальной топографии обработанной поверхности помогает контролировать процесс оплавления и корректировать его в случае необходимости [6]. Критериями по которым визуально оценивается степень оплавления являются целостность (сплошность) полученной дорожки и ее ширина (рис. 4).



а – исходное изображение; б – изображение после обработки

Рисунок 4 - Пример изображения нормально проплавленного материала и результата обработки

Нормальное состояние оплавленной дорожки оценивается наличием одного протяженного сегмента шириной не более 100 пикселей с однородной яркостью (рис. 4б).

**Заключение.** Применение новых материалов, оборудования и технологических приемов обработки позволяет повысить ресурс быстроизнашивающихся деталей в т.ч. рабочих органов почвообрабатывающей техники от 1,5 до 4 раз.

# Список литературы

1. Ивашко В.С. Обоснование размеров структурных составляющих при упрочнении ножей измельчающих аппаратов кормоуборочной техники / Ивашко В.С., Декевич П.А. Материалы 8-го Междунор. науч.-техн. семинара. Современные проблемы подготовки производства,

- заготовительного производства, обработки, сборки и ремонта в промышленности и на транспорте, Киев, 26-28 февраля 2008г./ Институт сверхтвердых материалов им. В.Н. Бакуля НАН Украины. — 2008
- 2. Астапчик С.А. / Астапчик С.А., Ивашко В.С. Технология поперечно-клиновой прокатки в сельхозмашиностроении республики Беларусь. В сб. Современные методы и технологии создания и обработки материалов.-Мн. 2006. С. 376–381/
- 3. Бетеня Г.Ф., Теоретические и технологические основы упрочнения и восстановления деталей сельскохозяйстенной техники. / Бетеня Г.Ф., Буйкус К.В., Ивашко В.С. и др. Мн. БГАТУ, 2006.
- 4. Абрамович Т.М. Влияние технологических факторов на сврйства покрытий при их электроконтактном припекании. Вопросы теории. / Абрамович Т.М., Донских С.А., Ярошевич В.К. Материалы Междунар. науч.-техн. конф. Модели и алгоритмы для имитации физико-химических процессов. Таганрог, 2008.
- 5. Громыко Г.Ф. Моделирование процесса микроплазменной обработки деталей с нанесением порошковых материалов. / Громыко, Г.Ф., Мацука, Н.П., Ивашко, В.С., Декевич, П.А Сборник научных трудов VI международной научно-технической конференции «Материалы, технологии и оборудование в производстве, эксплуатации, ремонте и модернизации машин» Новополоцк 2007
- 6. Ивашко В. С. Применение системы визуализации при лазерной и микроплазменной обработке деталей рабочих органов кормоуборочных машин / Ивашко В. С., Декевич П.А., Инютин А.В. : материалы 8-го Междунор. науч.-технического семинара. Современные проблемы подготовки производства, заготовительного производства, обработки, сборки и ремонта в промышленности и на транспорте, Киев, 26-28 февраля 2008г./ Институт сверхтвердых материалов им. В.Н. Бакуля НАН Украины. 2008.
- 7. Ивашко В. С. Микроплазменное оплавление самофлюсующихся материалов при упрочнении ножей измельчающих аппаратов / Ивашко В. С., Декевич П.А. В сб. «Новые материалы и технологии: порошковая металлургия, композиционные материалы, защитные покрытия, сварка», Минск: 2008.

#### В. Ивашко, В. Ярошевич, П. Лузан, Г. Мдзинарашвили

## Зміцнення швидкозношуваних деталей ґрунтообробної техники

Дана стисла характеристика нових матеріалів і методів зміцнення деталей робочих органів грунтообробних знарядь, які швидко зношуються. Розглянуті такі прогресивні методи отримання необхідних властивостей зносостійкого шару як метод прокатки, электроконтактного припікання, лазерної і мікроплазмової обробки.

## V. Ivashko, V. Yaroshevich, P. Luzan, G. Mdzynarashvily

### The strengthening for quick wear out details of tiller machines

Brief characteristic of new materials and methods of strengthening for high-wear parts of tiller machines is presented. The progressive methods to create required properties of wear-registrant layer such as method of cross-wedge rolling, electrocontact sintering, laser and microplastic treatments are considered.

Получено 22.09.09