ISSN 2414-3820 , , 2018, . 48 22 631.33 DOI: https://doi.org/10.32515/2414-3820.2018.48.22-35 . . , . . , . , e-mail: vasilkovskakv@ukr.net , , – – . , , .. , . , . , , . , , , , , . . , . . , . , , , - , , – . , , . , . , – . , , . , , , , , ___________ © . . , 2018 ISSN 2414-3820 , , 2018, . 48 23 . – . . , , , , . . . - , 1904 ( . 1) [1]. , . , 1916 ( . 2) [1]. , , , . . , 1934-1935 . . . [3, 4]. 1 – , 2 – , 3 – , 4 – 1 – , 1904 [1] 1 – , 2 – , 3 – , 4 – ; 5 – ; 6 – 2 – , 1916 : [2] ISSN 2414-3820 , , 2018, . 48 24 1933 , « » . . , , , , [3]. – – . . . EDX 9000-T Amazone ( . 3) [3, 5] 15 / , . . 1 – ; 2 – ; 3 – ; 4 – ; 5- ; 6 – Super-V 3 – Amazone EDX 9000-T : [5] Xpress . . , ISSN 2414-3820 , , 2018, . 48 25 , . . , , . , , , . ’ Amatron+. Amazone EDX 9000-T . , . , , « ». Tempo Väderstad ( . 4) [6] – , , . Tempo - . , . Tempo – Gilstring Seed Meter, . Tempo : , . . Power Shoot, , , . 4 – Tempo Väderstad : [6] ISSN 2414-3820 , , 2018, . 48 26 , , . ’ , . , . , , , , , . - . Tempo , , : . , . Becker, Aeromat ( . 5) [3, 7] Centra. Aeromat – . Aeromat – . , , , , , , . . . . 5 – Aeromat A Becker : [7] , . , . , . , ISSN 2414-3820 , , 2018, . 48 27 . , . , 14 / . , Aeromat A Becker , : . , . Great Plains [3, 7] . . 3P3025AH ( . 6) . 9,14 . 3P3025AH - . , 3- , Great Plains Air-Pro®. . 6 – Great Plains 3P3025AH : [7] , . Air-Pro®, , . 3P3025AH Great Plains , , . ISSN 2414-3820 , , 2018, . 48 28 Kverneland Accord, Kverneland, Rau. Accord Optima ( . 7) [3, 7] , , . , . , . . . , « » . . . , . , . , . 1 – ; 2 – ; 3 – ; 4 – ; 5 – ; 6 – ; 7 – ; 8 ; 9 – ; 10 – 7 – Accord Optima Kverneland : [7] Quivogne. Prosem P ( . 8) [3, 7, 8] . , , . . 33 80 . 55 ’ . . . . ISSN 2414-3820 , , 2018, . 48 29 8 – Prosem P Quivogne : [8] V- . Prosem P Quivogne , , . Kuhn Maxima Planter - . , . Planter ( . 9) [3, 9] . 3 9 ( – 25-45 ). 38 80 . . , . . , 10 . , . , , , . ISSN 2414-3820 , , 2018, . 48 30 9 – Planter 3 Kuhn : [9] Planter 3 Kuhn , , . Massey Ferguson – AGCO. Massey Ferguson . MF 555 ( . 10) [3, 8] 3-24- ( – 70-76 ). 10 – MF 555 Massey Ferguson : [8] ISSN 2414-3820 , , 2018, . 48 31 Massey Ferguson (PAM), , . , . , . . . MF 555 Massey Ferguson « » , , , . Maschio – . Gaspardo, 1994 Maschio. , . Maestra Gaspardo ( . 11) [3, 10] , , , . , 6-12 8-24 . 3,5-10 . 11 – Maestra Maschio : [10] , ( , , , , , .). ISSN 2414-3820 , , 2018, . 48 32 . . . 3,5 10 . Maestra Maschio , . Monosem . NC Classic Technic ( . 12) [3, 11] 3,0-12,6 (4-16 ). Classic – , . . Technic – , , , , , , . Technic , , Farm ex . NC Technic . . Monosem , , , . , , , . , , , . 12 – NC Technic Monosem : [11] ISSN 2414-3820 , , 2018, . 48 33 ( 3 9,2 , – 45-50 ). Monosem CS. . , , . ( Amazone EDX 9000-T). , . , , « ». , , ( 3P3025AH Great Plains, Prosem P Quivogne, Planter 3 Kuhn, Maestra Maschio). , , . , , , . , , : ( Tempo Väderstad, Aeromat A Becker, MF 555 Massey Ferguson). , . , . , , . . . , , « » – , , , . 1. Patent US of America 773205, dated October 25, 1904, Seed-planting machine, George William Green. 2. Breved d’invention de Republique Francaise 480.986, publie 19 octobre 1916, Outil de semaille, M. Charles Bristow. 3. . . : . ... . . : 05.05.11 / . . . - . , 2014. 20 . 4. . ., . ., . . . ISSN 2414-3820 , , 2018, . 48 34 . . , . 1 « ». : . . , 2010. . 93. . 157-163. 5. AMAZONE ( ). URL: http://info.amazone.de 6. VÄDERSTAD ( ). URL: http://vaderstad.com/ua/Products 7. . ., . . : . : , 2011. 276 . 8. / . . .; . . . , . . , . . . : , 2004. 396 . 9. KUHN ( ). URL: http://www.kuhn.ua/internet/webua.nsf/. 10. GASPARDO ( ). URL: http://www.maschionet.com/page-378/ 11. MONOSEM ( ). URL: : http://www.monosem.fr/ References 1. Patent US of America 773205, dated October 25, 1904, Seed-planting machine, George William Green [in English]. 2. Breved d’invention de Republique Francaise 480.986, publie 19 octobre 1916, Outil de semaille, M. Charles Bristow [in English]. 3. Vasyl'kovs'ka, K.V. (2014) .Obgruntuvannia parametriv universal'noho pnevmomekhanichnoho vysivnoho aparata tochnoho vysivu [Justification-purpose pneumatic precision seeder sowing device]. Candidate’s thesis. Kirovohrad [in Ukrainian]. 4. Petrenko, M.M., Vasyl'kovs'kyj, M.I., Vasyl'kovs'ka, K.V. (2010). Analiz konstruktsij vysivnykh aparativ tochnoho vysivu [Analysis of constructions of sowing vehicles of seed-spacing]. Visnyk Kharkivs'koho natsional'noho tekhnichnoho universytetu sil's'koho hospodarstva im. P. Vasylenka, T. 1 «Mekhanizatsiia sil's'kohospodars'koho vyrobnytstva», Vol. 93, 157-163 [in Ukrainian]. 5. Kataloh sivalok tochnoho vysivu AMAZONE (Nimechchyna) [Catalog of precision sowing machines AMAZONE]. amazone info-portal. Retrieved from http://info.amazone.de [in Ukrainian]. 6. Kataloh produktsii kompanii VÄDERSTAD (Shvetsiia) [Catalog of the company VÄDERSTAD]. vaderstad.com. Retrieved from http://vaderstad.com/ua/Products [in Ukrainian]. 7. Bojko, A.I., Sviren', N.A. (2011). Povyshenie jeffektivnosti i nadezhnosti raboty vysevajushhih apparatov posevnyh mashin [Increase of the effectiveness and reliability of work v sevayuschyh apparatov posevn h machines]. K rovograd: KOD [in Ukrainian]. 8. Adamchuk, V.V., Baranov, H.L., Baranovs'kyj, O.S. et al. (2004). Modern trends structures agricultural machinery.V.I. Kravchuka, M.I. Hrytsyshyna, S.M. Kovalia (Ed.). Kyiv: Ahrarna nauka [in Ukrainian]. 9. Kataloh produktsii kompanii KUHN (Frantsiia) [Catalog of the company KUHN]. kuhn.ua. Retrieved from http://www.kuhn.ua/internet/webua.nsf/ [in Ukrainian]. 10. Kataloh produktsii GASPARDO (Italiia) [GASPARDO product catalog]. maschionet.com. Retrieved from http://www.maschionet.com/page-378/ [in Ukrainian]. 11. Kataloh produktsii kompanii MONOSEM (Frantsiia) [The product catalog of MONOSEM]. monosem.ru. Retrieved from http://www.monosem.fr/ [in Ukrainian]. Kateryna Vasylkovska, PhD tech. sci. Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine System Analysis of Constructions of Pneumomechanical Seeding Machines for Precise Seeding of Seed Crops The purpose of precision sowing is to obtain evenly spaced field fields of plants, which in this case have the same feeding area and develop in the best way. The analysis of the most common designs of seeding machines for precise seeding of cultivating crops has made it possible to establish that today the most common are pneumomechanical seeding machines, which, despite the greater complexity, are more versatile and less damaging the seeds to structural elements. Pneumomechanical seeding machines can be disc or drum - by design and vacuum or overpressure - by way of air supply. Drum seeding machines have not been widely used due to unresolved issues (sowing machine Amazone EDX 9000-T). The main ones are their high constructional position relative to the bottom of the furrow, which leads to a redistribution of the initial intervals between the seeds when they move to the furrow and a significant increase in their variation along the length of the line. In addition, due to the ineffective removal of unnecessary seeds from cells, they are characterized by the presence of a large number of "twins". ISSN 2414-3820 , , 2018, . 48 35 Currently, the most common are disk driven vacuum devices, which largely eliminate the disadvantages mentioned above (sowing machine 3P3025AH Great Plains, Quivogne Prosem P, Kuhn Planter 3, Maestra Maschio). They have relatively small dimensions, which allows them to be placed directly above the coulter without the use of seed lines, which most significantly affect the redistribution of seed intervals. In addition, they have more efficient devices for removing unnecessary seeds from the sucking holes of the seed disc and, as a rule, provide a more even output seed flow. Among the disadvantages inherent in the most widespread vacuum seeding machines, the researchers noted an increase in uneven seed seed when increasing the number of seeding speed of the seed disk. The advantages of sowing machines with excessive air pressure compared with vacuum are the additional important air flow functions that improve the work of the machine, namely: removal of unnecessary seeds from the cells of seeding elements and pneumotransport of seeds from the seed disk to the bottom of the furrow with a certain redistribution of uniformity (sowing machine Tempo T of the company Väderstad, Aeromat A for Becker, Massey Ferguson for MF 555). The disadvantage inherent in all seed presses at the same time is the need to seal their seed bins to reduce air losses and improve the supply of seeds from the bunker to the working chamber, especially the Massey Ferguson MF 555 sowing machine. structural analysis, seed drills, precise hanging, pneumatic machine seeding, advantages, disadvantages (Received) 29.08.2018 (Reviewed) 5.12.2018 (Approved) 20.12.2018 681.513.5 DOI: https://doi.org/10.32515/2414-3820.2018.48.35-44 Oleksiy Lobok, Assos. Prof., Phd Phys. & Math. Sci., Boris Goncharenko, Prof., DSc. National University of Food Technologies, Kyiv, Ukraine Larisa Vihrova, Prof., PhD tech. sci. Central Ukrainian National Technical Univercity, Kropyvnytskyi, Ukraine e-mail: vihrovalg@ukr.net Marina Sych, PhD tech. sci. National University of Bioresources and Nature Management of Ukraine, Kyiv, Ukraine e-mail: sm.nuft@gmail.com The Problem of Selection of the Optimal Strategy of Minimax Control by Objects in Agricultural Production with Distributed Parameters he problem of minimax control synthesis for objects in agricultural production that are described by a two-dimensional heat conduction equation of parabolic type is solved. It is assumed that the control object functions under uncertainty conditions, and the perturbations acting on the object belong to some given hyperelipsoid. The problem of constructing a regulator in the state of an object for cases of point and mobile limit control is considered in accordance with the integral-quadratic quality criterion. With the help of numerical optimization methods, the problem of determining the optimal location of concentrated regulators at the boundary of a rectangular region and the problem of finding the optimal law of motion of a mobile limit regulator is solved. The problem is posed and solved in the minimax formulation when there is an optimal control on the state of the object functioning under uncertainty conditions so that the regulator minimizes the maximum control error from a set of possible values, taking into account the most unfavorable perturbations that ___________ © Oleksiy Lobok, Boris Goncharenko, Larisa Vihrova, Marina Sych, 2018