ΠΠ±ΡΡΠ½ΠΈΠΊΠΈ Π½Π°ΡΠΊΠΎΠ²ΠΈΡ ΠΏΡΠ°ΡΡ Π¦ΠΠ’Π£
Permanent URI for this communityhttps://dspace.kntu.kr.ua/handle/123456789/1
Browse
2 results
Search Results
Item type:Item, ΠΠ²ΡΠΎΠΌΠ°ΡΠΈΠ·Π°ΡΡΡ ΠΏΠΎΡΡΡΠΉΠ½ΠΎΡ ΡΠΎΠ·Π»ΠΈΠ²ΠΊΠΈ ΡΠΎΠ·ΠΏΠ»Π°Π²Ρ ΡΠ°Π²ΡΠ½Ρ Π² ΠΊΠΎΠΊΡΠ»Ρ ΠΏΡΠΈ Π²ΠΈΡΠΎΠ±Π½ΠΈΡΡΠ²Ρ Π²ΠΈΠ»ΠΈΠ²ΠΊΡΠ² Π΄Π΅ΡΠ°Π»Π΅ΠΉ ΠΌΠ°ΡΠΈΠ½ Π³ΡΡΠ½ΠΈΡΠΎΡΡΠ΄Π½ΠΎΡ ΠΏΡΠΎΠΌΠΈΡΠ»ΠΎΠ²ΠΎΡΡΡ(Π¦ΠΠ’Π£, 2020) ΠΠΎΠΌΠ°ΠΊΡΠ½, Π. Π.; ΠΡΠΊΠ°Π»ΠΎΠ², Π. Π.; ΠΡΠ±ΠΎΠ΄ΡΠ»ΠΎΠ², Π. Π.; ΠΠΎΡΡΠΊ, Π. Π‘.; Lomakin, V.; Pukalov, V.; Dubodelov, V.; Goryuk, M.; ΠΠΎΠΌΠ°ΠΊΠΈΠ½, Π. Π.; ΠΡΠ±ΠΎΠ΄Π΅Π»ΠΎΠ², Π. Π.ΠΠΈΠΊΠΎΠ½Π°Π½ΠΎ Π°Π½Π°Π»ΡΠ· ΠΎΡΠ½ΠΎΠ²Π½ΠΈΡ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΡΠ² Π΄ΠΎΠ·ΡΠ²Π°Π½Π½Ρ ΡΠΎΠ·ΠΏΠ»Π°Π²Ρ ΡΠ°Π²ΡΠ½Ρ Π² ΠΌΠ΅ΡΠ°Π»Π΅Π²Ρ ΡΠΎΡΠΌΠΈ Π·Π° Π΄ΠΎΠΏΠΎΠΌΠΎΠ³ΠΎΡ ΠΌΠ°Π³Π½ΡΡΠΎΠ΄ΠΈΠ½Π°ΠΌΡΡΠ½ΠΎΡ ΡΡΡΠ°Π½ΠΎΠ²ΠΊΠΈ ΠΠΠ-6Π§. Π ΠΎΠ·ΡΠΎΠ±Π»Π΅Π½ΠΎ ΠΏΡΠΈΠ½ΡΠΈΠΏΠΎΠ²Ρ ΡΡ Π΅ΠΌΡ ΡΠΏΡΠ°Π²Π»ΡΠ½Π½Ρ Π΅Π»Π΅ΠΊΡΡΠΎΠΌΠ°Π³Π½ΡΡΠ½ΠΈΠΌΠΈ ΡΠΈΡΡΠ΅ΠΌΠ°ΠΌΠΈ Π°Π³ΡΠ΅Π³Π°ΡΡ. ΠΡΠ΄ΠΏΡΠ°ΡΡΠΎΠ²Π°Π½ΠΎ ΡΠ΅Ρ Π½ΠΎΠ»ΠΎΠ³ΡΡ Π΄ΠΎΠ·ΡΠ²Π°Π½Π½Ρ Ρ Π·Π°Π»ΠΈΠ²ΠΊΠΈ ΠΌΠ΅ΡΠ°Π»Ρ Π² ΠΊΠΎΠΊΡΠ»Ρ ΠΏΡΠΈ Π²ΠΈΠ³ΠΎΡΠΎΠ²Π»Π΅Π½Π½Ρ ΡΠ°Π²ΡΠ½Π½ΠΈΡ ΠΊΡΠ»Ρ Π΄ΡΠ°ΠΌΠ΅ΡΡΠΎΠΌ 40 Ρ 120 ΠΌΠΌ. The analysis of the basic parameters of the dosage of molten iron in metal forms using the magnetodynamic installation MDN-6CH. A schematic diagram has been developed for controlling the electromagnetic systems of the unit. The technology of dosing and pouring metal into the chill mold has been developed in the manufacture of cast iron balls with a diameter of 40 and 120 mm. At the optimal casting temperature, the electrical parameters of the inductor (voltage Ui, current Ii, power Ri) were in the range Ui = 250-300 V, Ii = 480-520 A, Ri = 140-160 kW. When reducing the mass of metal in the crucible MDN-6CH using a control scheme made switching inductor from a voltage of 300 V to 250 V. The power was reduced by 15-20 kW, and the temperature of the metal remained within the tolerance of the technology of metal casting. Using the adopted dosing scheme, it became possible to cast metal at constant parameters of the electromagnetic system and the time of pouring. The technology of dispensing and pouring metal into the mold for the production of cast iron balls with a diameter of 40 and 120 mm was carried out at an inductor voltage of 300 V, and the electromagnet - 220 V. The initial level of metal on the drain socket was equal to 20 mm. The molding time of molds in the manufacture of balls with a diameter of 40 mm was 7.3 s, and balls with a diameter of 120 mm - 16.2 s. The operating time of the electromechanical actuator was set in the manufacture of balls with a diameter of 40 mm - 0.35 s, and balls with a diameter of 120 mm - 0.75s. The consumption of metal in the manufacture of balls with a diameter of 40 and 120 mm was in the range of 0.7-0.75 kg / s and 1.65-1.70 kg / s, respectively. The metal casting was carried out at temperatures of 1320-1340 Β° C and 1360-1380 Β° C. The dosage accuracy was determined by weighing the metal of the poured balls and the molding system of the mold. Mathematical processing of the results of the dosing showed that in the manufacture of balls with a diameter of 40 mm at a temperature of 1320 Β°C the error of dosing is 10-11%. With increasing iron temperature, the dosage error decreases and at a metal temperature of 1370 Β°C is 5-6%. In the manufacture of balls with a diameter of 120 mm at a temperature of iron 1330, the dosage error is 7-8%, and at a temperature of 1360 Β° C - 3-4%. The study of the characteristics of the casting and dosing process of cast iron in the chill mold allowed us to develop the technology of casting cast iron melts, which provided the required metering accuracy and high productivity of the conveyor production of grinding bodies. ΠΡΠΎΠ²Π΅Π΄Π΅Π½ Π°Π½Π°Π»ΠΈΠ· ΠΎΡΠ½ΠΎΠ²Π½ΡΡ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² Π΄ΠΎΠ·ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΠ°ΡΠΏΠ»Π°Π²Π° ΡΡΠ³ΡΠ½Π° Π² ΠΌΠ΅ΡΠ°Π»Π»ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠΎΡΠΌΡ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΌΠ°Π³Π½ΠΈΡΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΡΠ°Π½ΠΎΠ²ΠΊΠΈ ΠΠΠ-6Π§. Π Π°Π·ΡΠ°Π±ΠΎΡΠ°Π½Π° ΠΏΡΠΈΠ½ΡΠΈΠΏΠΈΠ°Π»ΡΠ½Π°Ρ ΡΡ Π΅ΠΌΠ° ΡΠΏΡΠ°Π²Π»Π΅Π½Π½Ρ ΡΠ»Π΅ΠΊΡΡΠΎΠΌΠ°Π³Π½ΠΈΡΠ½ΡΠΌΠΈ ΡΠΈΡΡΠ΅ΠΌΠ°ΠΌΠΈ Π°Π³ΡΠ΅Π³Π°ΡΠ°. ΠΡΡΠ°Π±ΠΎΡΠ°Π½Π° ΡΠ΅Ρ Π½ΠΎΠ»ΠΎΠ³ΠΈΡ Π΄ΠΎΠ·ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΈ Π·Π°Π»ΠΈΠ²ΠΊΠΈ ΠΌΠ΅ΡΠ°Π»Π»Π° Π² ΠΊΠΎΠΊΠΈΠ»Ρ ΠΏΡΠΈ ΠΈΠ·Π³ΠΎΡΠΎΠ²Π»Π΅Π½ΠΈΠΈ ΡΡΠ³ΡΠ½Π½ΡΡ ΡΠ°ΡΠΎΠ² Π΄ΠΈΠ°ΠΌΠ΅ΡΡΠΎΠΌ 40 ΠΈ 120 ΠΌΠΌ.Item type:Item, ΠΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½Π½Ρ ΠΏΡΠΎΡΠ΅ΡΡ Π·Π°ΡΠ²Π΅ΡΠ΄ΡΠ½Π½Ρ ΡΠ° ΠΏΡΠΎΠ³Π½ΠΎΠ·ΡΠ²Π°Π½Π½Ρ ΡΡΡΡΠΊΡΡΡΠΈ Π»ΠΈΡΠΈΡ ΡΠ°Π²ΡΠ½Π½ΠΈΡ ΠΌΠΎΠ»ΠΎΠ»ΡΠ½ΠΈΡ ΡΡΠ»(Π¦ΠΠ’Π£, 2018) ΠΠΎΠΌΠ°ΠΊΡΠ½, Π. Π.; ΠΠ»ΠΈΠΌΠ΅Π½ΠΊΠΎ, Π. Π.; ΠΡΠΊΠ°Π»ΠΎΠ², Π. Π.; ΠΡΠ·ΠΈΠΊ, Π. Π.; ΠΡΠ±ΠΎΠ΄ΡΠ»ΠΎΠ², Π. Π.; ΠΠΎΡΡΠΊ, Π. Π‘.; ΠΠΎΠΌΠ°ΠΊΠΈΠ½, Π. Π.; ΠΡΠ·ΡΠΊ, Π. Π.; ΠΡΠ±ΠΎΠ΄Π΅Π»ΠΎΠ², Π. Π.; Lomakin, V.; Klymenko, V.; Pukalov, V.; Kuzyk, O.; Dubodelov, V.; Goriuk, M.Π ΠΎΠ·Π³Π»ΡΠ΄Π°ΡΡΡΡΡ Π²ΠΈΠΊΠΎΡΠΈΡΡΠ°Π½Π½Ρ ΠΌΠ΅ΡΠΎΠ΄Ρ ΡΠΊΡΠ½ΡΠ΅Π½Π½ΠΈΡ Π΅Π»Π΅ΠΌΠ΅Π½ΡΡΠ² Π΄Π»Ρ ΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΎΠ·ΡΠ°Ρ ΡΠ½ΠΊΡ ΠΏΡΠΎΡΠ΅ΡΡ Π·Π°ΡΠ²Π΅ΡΠ΄ΡΠ½Π½Ρ Π²ΠΈΠ»ΠΈΠ²ΠΊΡΠ² ΠΌΠΎΠ»ΠΎΠ»ΡΠ½ΠΈΡ ΡΡΠ» ΡΠΈΠ»ΡΠ½Π΄ΡΠΈΡΠ½ΠΎΡ Ρ ΡΡΠ΅ΡΠΈΡΠ½ΠΎΡ ΡΠΎΡΠΌΠΈ Π² ΠΊΠΎΠΊΡΠ»Ρ Π² Π·Π°Π»Π΅ΠΆΠ½ΠΎΡΡΡ Π²ΡΠ΄ Ρ ΡΠΌΡΡΠ½ΠΎΠ³ΠΎ ΡΠΊΠ»Π°Π΄Ρ ΡΠΏΠ»Π°Π²Ρ ΡΠ° Π΄Π»Ρ ΠΏΡΠΎΠ³Π½ΠΎΠ·ΡΠ²Π°Π½Π½Ρ ΡΠΏΡΠ²Π²ΡΠ΄Π½ΠΎΡΠ΅Π½Π½Ρ ΠΌΡΠΆ ΠΊΡΠ»ΡΠΊΡΡΡΡ Π»Π΅Π΄Π΅Π±ΡΡΠΈΡΡ, ΡΠΎ Π²ΠΈΠ·Π½Π°ΡΠ°Ρ Π·Π½ΠΎΡΠΎΡΡΡΠΉΠΊΡΡΡΡ ΠΌΠΎΠ»ΠΎΠ»ΡΠ½ΠΈΡ ΡΡΠ», ΡΠ° ΠΊΡΠ»ΡΠΊΡΡΡΡ Π°ΡΡΡΠ΅Π½ΡΡΠΎ-Π³ΡΠ°ΡΡΡΠ½ΠΎΡ Π΅Π²ΡΠ΅ΠΊΡΠΈΠΊΠΈ. Π Π°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π΅ΡΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΌΠ΅ΡΠΎΠ΄Π° ΠΊΠΎΠ½Π΅ΡΠ½ΡΡ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² Π΄Π»Ρ ΡΠΈΡΠ»Π΅Π½Π½ΠΎΠ³ΠΎ ΡΠ°ΡΡΠ΅ΡΠ° ΠΏΡΠΎΡΠ΅ΡΡΠ° Π·Π°ΡΠ²Π΅ΡΠ΄Π΅Π²Π°Π½ΠΈΡ ΠΎΡΠ»ΠΈΠ²ΠΎΠΊ ΠΌΠ΅Π»ΡΡΠΈΡ ΡΠ΅Π» ΡΠΈΠ»ΠΈΠ½Π΄ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΈ ΡΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΎΡΠΌΡ Π² ΠΊΠΎΠΊΠΈΠ»Π΅ Π² Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΎΡ Ρ ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠΎΡΡΠ°Π²Π° ΡΠΏΠ»Π°Π²Π° ΠΈ Π΄Π»Ρ ΠΏΡΠΎΠ³Π½ΠΎΠ·ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΠΌΠ΅ΠΆΠ΄Ρ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎΠΌ Π»Π΅Π΄Π΅Π±ΡΡΠΈΡΠ°, ΡΡΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅Ρ ΠΈΠ·Π½ΠΎΡΠΎΡΡΠΎΠΉΠΊΠΎΡΡΡ ΠΌΠ΅Π»ΡΡΠΈΡ ΡΠ΅Π», ΠΈ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎΠΌ Π°ΡΡΡΠ΅Π½ΠΈΡΠΎ-Π³ΡΠ°ΡΠΈΡΠ½ΡΠΉ ΡΠ²ΡΠ΅ΠΊΡΠΈΠΊΠΈ. The aim of the study was to calculate the kinetics of crystallization and to determine the rational mode for cooling castings of a crushing cylinder and a crushing ball in metallic form to ensure that the surface wear-resistant bleached layer does not have more than a third of the size (or radius of the ball) from the surface of the body. The use of the finite element method for numerical calculation of solidification of castings of grinding bodies of cylindrical and spherical bodies in chill molds is considered depending on the chemical composition of the alloy and for predicting the ratio between the amount of ledeburite, which determines the wear resistance of grinding bodies, and the amount of austenite-graphite eutectic. The experimental chemical composition of cast iron for grinding bodies: 3-3.9% C, 2.8-4% Si, 0.6-1.2% Mn; less 0.03% P, less 0,02% S. For cylindrical and spherical bodies, the thermal conductivity functional was obtained and the kinetics of crystallization of castings was calculated. The data obtained indicate an inhomogeneity in the distribution of the linear rate of solidification along the cross-section of cast products. At the beginning of the process, the solidus front has a relatively high velocity (0.08 mm / s), which rapidly decreases with increasing thickness of the crust. Further, with the passage of time, the thickness of the two-phase zone gradually decreases and in the central part of the casting the rate of solidification is ~ 0.005 mm / sec. It is established that the microstructure of low-chromium cast iron (~ 1% Cr) is perlite-ledeburite. The carbide phase is represented by doped cementite (Fe, Cr)3Π‘. A comparative analysis of the operational properties and the cost of their achievement showed that in today's conditions, it is a compromise to make cast grinding bodies from low-alloyed cast iron (0.8-1% Cr). The data obtained by the calculation method are in good agreement with the results of production tests of cast grinding bodies, which made it possible to optimize the technology for manufacturing such products.