Збірники наукових праць ЦНТУ

Permanent URI for this communityhttps://dspace.kntu.kr.ua/handle/123456789/1

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Модель надійності деталей транспортних машин за процесами реалізації триботехнологій їх припрацювання і відновлення
    (ЦНТУ, 2019) Аулін, В. В.; Лисенко, С. В.; Гриньків, А. В.; Аулин, В. В.; Лысенко, С. В.; Гринькив, А. В.; Aulin, V.; Lysenko, S.; Grinkiv, A.
    Обґрунтована необхідність побудови фізичних та математичних моделей надійності з врахуванням випадкових процесів та кількості локальних областей при зношуванні та відновленні з використанням триботехнологій припрацювання та відновлення. Дана модель поверхневого шару деталі з k підшарів. Розглянуто поведінку системи "поверхневий шар" з точки зору надійності, як поведінку системи сукупностей взаємозалежних локальних областей контактів. Стохастична модель надійності деталі зведена до системи поверхневих шарів з випадковими локальними областями контактів спряжених деталей. Наведено граф станів псевдосистеми "поверхневий шар" при різних умовах. Отримано систему стохастичних диференціальних рівнянь для розгляду процесів деградації та відновлення псевдостанів та наведено часткові її розв'язки. Обоснована необходимость построения физических и математических моделей надежности с учетом случайных процессов и количества локальных областей при износе и восстановлении с использованием триботехнологий приработки и восстановления. Данная модель поверхностного слоя детали из k подслоев. Рассмотрены поведение системы "поверхностный слой" с точки зрения надежности, как поведение системы совокупностей взаимосвязанных локальных областей контактов. Стохастическая модель надежности детали сведена к системе поверхностных слоев со случайными локальными областями контактов сопряженных деталей. Приведен граф состояний псевдосистемы "поверхностный слой" при различных условиях. Получена система стохастических дифференциальных уравнений для рассмотрения процессов деградации и восстановления псевдосостояний и приведены частичные ее решения. The necessity of building physical and mathematical models of reliability with the consideration of random processes and the number of local areas during wear and restoration using tribotechnologies of working out and restoration is substantiated. The change of states of systems of a surface layer and a part as a whole is presented in the form of graphs for cases of research of processes of wear and restoration and their consideration as systems. Technical states are represented as discrete sets. A pseudostate method was used to build the reliability model and a graph was developed that combined processes of wear and restoration of surface layers of parts. The surface model of the workpiece consists of k sublayers. The behavior of the surface layer system is considered in terms of reliability as the behavior of a system of sets of interdependent local contact areas. The stochastic model of part reliability is reduced to a system of surface layers with random local contact areas of conjugated parts. The graph of the pseudostates of the surface layer system under different conditions is given. A system of stochastic differential equations is obtained to consider the processes of degradation and reconstruction of pseudostates and give partial solutions to it. Three partial cases of non-stationary wear and restoration of the surface layer system are considered: the intensity of these processes in the local contact areas of the surface layer do not depend on their working quantity, but are only a function of time; the intensity of wear and tear in local contact areas is independent of the number of them working at a given time; the wear and tear intensity is a function of time and number of working contacts. It is determined that the efficiency of the process of solving problems, reflected in partial cases, is significantly increased when using the mathematical apparatus of Markov chains.
  • Item
    Напружено-деформований стан поверхневого шару деталей при реалізації триботехнологій припрацювання і відновлення
    (ЦНТУ, 2019) Аулін, В. В.; Лисенко, С. В.; Гриньків, А. В.; Яцун, В. В.; Скриннік, І. О.; Гупка, А. Б.; Аулин, В. В.; Лысенко, С. В.; Гринькив, А. В.; Яцун, В. В.; Скринник, И. А.; Гупка, А. Б.; Aulin, V.; Lysenko, S.; Grinkiv, A.; Yatsun, V.; Skrynnik, I.; Gupka, A.
    З теоретичної точки зору розглянуто вплив триботехнологій припрацювання і відновлення на формування напружено-деформованого стану поверхневих шарів спряжених деталей систем і агрегатів транспортних засобів. Визначено, що переважна більшість їх трибоспряжень працюють в умовах пластичного насиченого або ненасиченого контактів. Модифікований поверхневий шар сформований реалізацією триботехнологій припрацювання і відновлення спряжених деталей розглядали як конструктивно-ортотропні оболонки. Враховуючи систему діючих сил і моментів сил показано, що вони задовольняють рівнянням рівноваги, що характерні для тонких однорідних оболонок Компоненти напруження і деформації поверхневого шару отримані відповідно до узагальненого закону Гука, з урахуванням гіпотези Кірхгофа-Ляве. Ці вирази можна використовувати для оцінки напружено-деформованого стану спряжених поверхонь деталей при їх модифікуванні або впливі в процесі реалізації триботехнологій припрацювання та відновлення для підвищення їх ресурсу. С теоретической точки зрения рассмотрено влияние триботехнологий приработки и восстановления на формирование напряженно-деформированного состояния поверхностных слоев сопряженных деталей систем и агрегатов транспортных средств. Определено, что подавляющее большинство их трибосопряжений работают в условиях пластического насыщенного или ненасыщенного контактов. Модифицированный поверхностный слой сформированный реализацией триботехнологий приработки и восстановления сопряженных деталей рассматривали как конструктивно-ортотропные оболочки. Учитывая систему действующих сил и моментов сил показано, что они удовлетворяют уравнениям равновесия, характерным для тонких однородных оболочек Компоненты напряжения и деформации поверхностного слоя полученные в соответствии с обобщенного закона Гука, с учетом гипотезы Кирхгофа-Ляве. Эти выражения можно использовать для оценки напряженно-деформированного состояния сопряженных поверхностей деталей при их модифицировании или воздействии в процессе реализации триботехнологий приработки и восстановления для повышения их ресурса. When solving the problem of increasing the wear resistance and reliability of machine systems and assemblies, an important factor is to take into account the stress-strain state of the working surface layer of parts. This state changes if the part is purposefully strengthened during coating or when the operating modes of the tribological conjugations of the parts are changed. In this work, the tribotechnologies of running-in and recovery are taken as modifying actions and the concept of a dynamic approach to changing stress and strain fields is developed. An attempt is made to simulate a stress-strain layer of a part during operation. From a theoretical point of view, the influence of tribological technologies of running-in and recovery on the formation of the stress-strain state of the surface layers of the conjugate parts of systems and assemblies of vehicles is considered. It was determined that the vast majority of their tribological conjugations work under conditions of plastic saturated or unsaturated contacts. The modified surface layer formed by the implementation of tribological technologies of running-in and recovery of mating parts was considered as structural-orthotropic shells. Given the system of acting forces and moments of forces, it is shown that they satisfy the equilibrium equations characteristic of thin homogeneous shells. The stress and strain components of the surface layer obtained in accordance with the generalized Hooke law, taking into account the Kirchhoff-Lave hypothesis. These expressions can be used to assess the stress-strain state of the mating surfaces of parts when they are modified or exposed during the implementation of tribological technologies of running-in and recovery to increase their resource. It should be noted that in the formulas the average values of the value characterizing the stress-strain state of the material of the part are used.