Збірники наукових праць ЦНТУ

Permanent URI for this communityhttps://dspace.kntu.kr.ua/handle/123456789/1

Browse

Search Results

Now showing 1 - 10 of 11
  • Item
    Зведення задачі мінімаксного керування лінійними нестаціонарними системами до H∞ – робастного шляхом динамічної гри
    (ЦНТУ, 2020) Лобок, О. П.; Гончаренко, Б. М.; Віхрова, Л. Г.; Lobok, O.; Goncharenko, B.; Vihrova, L.; Лобок, А. П.; Гончаренко, Б. Н.; Вихрова, Л. Г.
    В роботі розв’язана задача синтезу мінімаксного керування для динамічних, описаних системою лінійних диференційних рівнянь (з врахуванням стану, керувань, збурень та початкових умов, з наведеним рівнянням спостереження включно)об’єктів,що функціонують у відповідності з інтегрально- квадратичним критерієм якості в умовах невизначенності. Припускалося, що зовнішні збурення, похибки та початкові умови належать певній множині невизначеностей. Задача пошуку оптимального керування у вигляді зворотного по виходу об’єктазв’язку, який мінімізує критерій функціонування, представлена у вигляді мінімаксної задачі оптимального керування за умов невизначеностей. За відсутності готових шляхів розв’язання показане зведення даної задачі до задачі H∞ - керування при найбільш несприятливих збуреннях, а крім того і до динамічної ігрової задачі з нулевою сумою та визначеною ціною гри, та наведена стратегія її розв’язання, щопропонує шлях до нових результатів. Завдання пошуку оптимального керування і початкового стану, які максимізують критерій якості, розглянуто в рамках оптимізаційної задачі, яку розв’язано методом множників Лагранжа після введення допоміжної скалярної функції – гамільтоніана. Показано, що для знаходження максимального значення критерію може бути використана або необхідна умова екстремуму першого роду, що залежить від співвідношення першої варіації критерію та перших варіацій векторів керування і початкового стану або також необхідна умова екстремуму другого роду, що залежить від знаку другої варіації. Приведені для перших та другихваріацій формули, які можуть використовуватися для розрахунків. Запропоновано задачу пошуку керування розв’язувати в два етапи: пошук проміжного розв’язку при фіксованих значеннях векторів керування та похибки і наступний пошук остаточного оптимального керування. Розглянуте також розв’язання H∞ - оптимального керування на нескінченому часі з врахуванням сигналу з виходу компенсатора, а також – розв’язання відповідних матричних алгебраїчних рівнянь типу Рікатті. The problem of synthesis of minimax control for the dynamic, described by the linear system of differential equations (taking into account the state, controls, perturbations and initial conditions, with the given equation of observation inclusive) of objects functioning in accordance with the integral-quadratic quality criterion in uncertainty is solved in the work. External perturbations, errors, and initial conditions were assumed to belong to a number of uncertainties. The task of finding optimal control in the form of a feedback object that minimizes the performance criterion is presented in the form of a minimum maximal uncertainty control problem. In the absence of ready-made solution paths, this problem is reduced to a H∞ - control problem under the most unfavorable disturbances, and in addition to a dynamic game problem with zero sum and a certain price for the game, and a strategy for solving it is proposed that offers a way to new results. The problem of finding the optimal control and the initial state that maximize the quality criterion is considered in the framework of the optimization problem solved by the Lagrange multiplier method after introducing the auxiliary scalar function, the Hamiltonian. It is shown that to find the maximum value of the criterion, either the necessary condition of the extremum of the first kind can be used, which depends on the ratio of the first variation of the criterion and the first variations of the control vectors and the initial state, or also the necessary condition of the extremum of the second kind, which depends on the sign of the second variation. For the first and second variations, formulas are given that can be used for calculations. It is suggested to solve the control search problem in two steps: search for an intermediate solution at fixed values of control vectors and errors, and then search for final optimal control. Consideration is also given to solving H∞ - optimal control for infinite control time with respect to the signal from the compensator output, as well as solving the corresponding Riccati matrix algebraic equations. В работе решена задача синтеза минимаксного управления для динамических, описанных системой линейных дифференциальных уравнений с учетом состояния, управления, возмущений, начальных условий и приведенного уравнения наблюдения включительно, объектов, функционирующих в соответствии с интегрально-квадратичным критерием качества. Предполагалось, что внешние возмущения, погрешности и начальные условия принадлежат некоторому множеству неопределенностей. Задача поиска оптимального управления в виде обратной по выходу связи, которая минимизирует критерий функционирования, представлена в виде минимаксной задачи оптимального управления в условиях неопределенности. При отсутствии готовых путей решения показано сведение данной задачи к задаче H∞ - управления при наиболее неблагоприятных возмущениях, а кроме того, к динамической игровой задаче с нулевого суммой и определенной ценой игры, и приведена стратегия ее решения, предлагающая путь к новым результатам. Задача поиска оптимального управления и начального состояния, которые максимизируют критерий качества, рассмотрена в рамках оптимизационной задачи, решенной методом множителей Лагранжа после введения вспомогательной скалярной функции - гамильтониана. Показано, что для нахождения максимального значения критерия может быть использовано или необходимое условие экстремума первого рода, которое зависит от соотношения первой вариации критерия и первых вариаций векторов управления и начального состояния или также необходимое условие экстремума второго рода, которое зависит от знака второй вариации. Для первых и вторых вариаций приведены формулы, которые могут использоваться для расчетов. Предложено задачу поиска минимаксного управления решать в два этапа: поиск промежуточного решения при фиксированных значениях векторов управления и погрешности и последующий поиск окончательного оптимального управления. Рассмотрено также нахождение H∞ - оптимального управления на бесконечном отрезке времени с учетом сигнала с выхода компенсатора, а также– решения соответствующих матричных уравнений типа Рикатти.
  • Item
    Synthesis of Modal Control of Multidimensional Linear Systems in Agricultural Production Based on Linear Matrix Inequalities
    (ЦНТУ, 2018) Lobok, O.; Goncharenko, B.; Vihrova, L.; Sych, M.; Лобок, А. П.; Гончаренко, Б. Н.; Вихрова, Л. Г.; Сыч, М. А.; Лобок, О. П.; Гончаренко, Б. М.; Віхрова, Л. Г.; Сич, М. А.
    The paper gives a solution to the problem of constructing modal regulators for linear multidimensional systemsin agricultural productionthat provide D-stability (asymptotic stability) of the control object. The control is represented as regulators providing feedback on the output of the control object, and uses the full and low order observers of Luenberger. To calculate the matrices of the regulators, we use the technique of linear matrix inequalities and generalize the Lyapunov stability concept (D-stability). The theorems are given which give necessary and sufficient conditions for D-stability of the controlled system. The constructive solution of the synthesis problem D-stabilizing (modal) regulators according to the measured output of the control object, based on the construction of observers of the state of the object of the complete and reduced order, is given. The solution is based on the use of the theory of linear matrix inequalities (LMI). For numerical simulation of the resulting modal regulators you can use effective methods of convex optimization and corresponding software that is included in a number of application packages, in particular, in the MatLab system.In this paper we describe methods for solving not only the direct problem of modal control, when the choice of parameters of a regulator is ensured by the coincidence of the roots of the characteristic equation of a closed system with a predefined set of complex numbers located on the left side of the complex plane, but also other problems of modal control, in which the requirement the exact placement of the roots in the left integrated half-plane is not superimposed, but only their membership in certain specified areas is required. Such areas, described by a system of linear matrix inequalities (LMI), are called LMI domains. Дается решение задачи построения модальных регуляторов для линейных многомерных систем в сельскохозяйственном производстве, обеспечивающих D-устойчивость (асимптотическую устойчивость) объекта управления. Управление представлено в виде регуляторов, обеспечивающих обратную связь по выходу объекта управления, и использует наблюдатели Луенбергера полного и пониженного порядка. Для вычисления матриц регуляторов используется техника линейных матричных неравенств и обобщение понятия устойчивости по Ляпунову (D-устойчивость). Приведенные теоремы дают необходимые и достаточные условия D-устойчивости управляемой системы. В работе дается конструктивное решение задачи синтеза D-стабилизирующих (модальных) регуляторов по измеряемым выходом объекта управления, основанного на построении наблюдателей состояния объекта определенного порядка. Решение получено на основе использования теории линейных матричных неравенств (LMI). Для численного моделирования полученных модальных регуляторов можно использовать методы выпуклой оптимизации и соответствующее программное обеспечение, которое входит в ряд пакетов прикладных программ, в частности, в систему MatLab. Описаны методы решения не только прямой задачи модального управления, когда выбором параметров регулятора обеспечивается совпадение корней характеристического уравнения замкнутой системы с предварительно заданным набором комплексных чисел, расположенных в левой части комплексной плоскости, но и других задач модального регулирования, в которых требование точного размещения корней в левой комплексной полуплоскости уже не накладывается, а нужна только их принадлежность к некоторым заданным областям, описываемым системой линейных матричных неравенств и называемых LMI- областями. Дається розв’язок задачі побудови модальних регуляторів для лінійних багатовимірних систем в сільськогосподарському виробництві, що забезпечують D-стійкість (асимптотичну стійкість) об'єкта керування. Керування представлено у вигляді регуляторів, що забезпечують зворотний зв'язок за виходом об'єкта керування, і використовує спостерігачі Луенбергера повного і зниженого порядку. Для обчислення матриць регуляторів використовується техніка лінійних матричних нерівностей і узагальнення поняття стійкості за Ляпуновим (D-стійкість). Наведені теореми, що дають необхідні і достатні умови D-стійкості керованої системи. В роботі дається конструктивний розв’язок задачі синтезу D-стабілізувальних (модальних) регуляторів за вимірюваним виходом об'єкта керування, заснований на побудові спостерігачів стану об'єкта певного порядку. Розв’язок отримано на основі використання теорії лінійних матричних нерівностей (LMI). Для чисельного моделювання отриманих модальних регуляторів можна використовувати ефективні методи опуклої оптимізації і відповідне програмне забезпечення, яке входить до ряду пакетів прикладних програм, зокрема, в систему MatLab. Описуються методи розв’язанняне тільки прямої задачі модального керування, коли вибором параметрів регулятора забезпечується збіг коренів характеристичного рівняння замкненої системи з попередньо заданим набором комплексних чисел, розташованих в лівій частині комплексної площини, але іінших задач модального регулювання, в яких вимога точного розміщення коренів в лівій комплексної півплощині вже не накладається, а потрібна лише їх приналежність до деяких заданих областей. Такі області, описані системою лінійних матричних нерівностей, називаються LMI- областями.
  • Item
    The Problem of Selection of the Optimal Strategy of Minimax Control by Objects in Agricultural Production with Distributed Parameters
    (ЦНТУ, 2018) Lobok, O.; Goncharenko, B.; Vihrova, L.; Sych, M.; Лобок, О. П.; Гончаренко, Б. М.; Вихрова, Л. Г.; Сыч, М. А.; Лобок, А. П.; Віхрова, Л. Г.; Сич, М. А.
    The problem of minimax control synthesis for objects in agricultural production that are described by a two-dimensional heat conduction equation of parabolic type is solved. It is assumed that the control object functions under uncertainty conditions, and the perturbations acting on the object belong to some given hyperelipsoid. The problem of constructing a regulator in the state of an object for cases of point and mobile limit control is considered in accordance with the integral-quadratic quality criterion. With the help of numerical optimization methods, the problem of determining the optimal location of concentrated regulators at the boundary of a rectangular region and the problem of finding the optimal law of motion of a mobile limit regulator is solved. The problem is posed and solved in the minimax formulation when there is an optimal control on the state of the object functioning under uncertainty conditions so that the regulator minimizes the maximum control error from a set of possible values, taking into account the most unfavorable perturbations that can act on the object or system. In this case, the perturbations of the object belong to a given limited region. The results of computational experiments illustrating the effectiveness of the constructed limiting concentrated and moving regulators are presented. The obtained results indicate that the controls found in the work are indeed optimal and ensure minimum errors (deviations from the given state) of the functioning of the system and energy costs for the implementation of control under given conditions and in the absence of any information on external action other than the region of permissible perturbations. In the work, for the first time, a minimax approach was used to control the objects described by the two-dimensional parabolic type thermal conductivity equation; the theoretical positions of synthesis of minimax regulators for cases of lumped boundary (point) and moving regulators are considered; algorithmic software is developed that allows to simulate the dynamics of the constructed minimax-regulators and to investigate the corresponding transients. В работе решается задача синтеза минимаксного управления для объектов в сельскохозяйственном производстве, которые описываются двумерным уравнением теплопроводности параболического типа. Предполагается, что объект управления функционирует в условиях неопределенности, причем возмущения, действующие на объект, принадлежат некоторому заданному гиперэлипсоиду. Рассматривается задача построения регулятора по состоянию объекта для случаев точечного и подвижного предельного управления в соответствии с интегрально-квадратичным критерием качества. С помощью числовых оптимизационных методов решена задача определения оптимального расположения сосредоточенных регуляторов на границе прямоугольной области и задача поиска оптимального закона перемещения подвижного предельного регулятора. Задача ставится и решается в минимаксной постановке, когда находится оптимальное регулирование по состоянию объекта, функционирующего в условиях неопределенности так, что регулятор обеспечивает минимизацию максимальной погрешности регулирования из множества возможных значений с учетом наиболее неблагоприятных возмущений, которые могут действовать на объект или систему. При этом возмущения объекта относятся к заданной ограниченной области. Приводятся результаты вычислительных экспериментов, иллюстрирующие эффективность построенных предельных сосредоточенных и подвижных регуляторов. Полученные результаты свидетельствуют о том, что найденные в работе управления действительно являются оптимальными и обеспечивают минимум погрешности (отклонения от заданного состояния) функционирования системы и энергетических затрат на осуществление управления при заданных условиях и при отсутствии какой-либо информации о внешнем воздействии, кроме области допустимых возмущений. В роботі розв’зується задача синтезу мінімаксного керування для об'єктів сільськогосподарського виробництва, які описуються двовимірним рівнянням теплопровідності параболічного типу. Передбачається, що об'єкт керування функціонує в умовах невизначеності, причому збурення, що діють на об'єкт, належать деякому заданому гіпереліпсоїду. Розглядається задача побудови регулятора стану об'єкта для випадків точкового і рухомого граничного керування згідно з інтегрально-квадратичним критерієм якості. За допомогою числових оптимізаційних методів розв’зана задача визначення оптимального розташування зосереджених регуляторів на кордоні прямокутної області і завдання пошуку оптимального закону переміщення рухомого граничного регулятора. Задача ставиться і розв’зується в мінімаксної постановці, коли знаходиться оптимальне регулювання станом об'єкта, який функціонує в умовах невизначеності так, що регулятор забезпечує мінімізацію максимальної похибки регулювання з безлічі можливих значень з урахуванням найбільш несприятливих збурень, які можуть діяти на об'єкт або систему. При цьому збурення об'єкта стосується до заданої обмеженої області. Наводяться результати обчислювальних експериментів, що ілюструють ефективність побудованих граничних зосереджених і рухомих регуляторів. Отримані результати свідчать про те, що знайдені в роботі керування дійсно є оптимальними і забезпечують мінімум похибки (відхилення від заданого стану) функціонування системи і енергетичних витрат на здійснення керування при заданих умовах і при відсутності будь-якої інформації про зовнішні впливи, крім області допустимих збурень.
  • Item
    Synthesis of Modal Control of Multidimensional Linear Systems Using Linear Matrix Inequalities
    (ЦНТУ, 2018) Lobok, O.; Goncharenko, B.; Vihrova, L.; Sych, M.; Лобок, А. П.; Гончаренко, Б. Н.; Вихрова, Л. Г.; Сыч, М. А.; Віхрова, Л. Г.; Сич, М. А.
    The paper gives a solution to the problem of constructing modal regulators for linear multidimensional systems that provide D-stability (asymptotic stability) of the control object. The control is represented as regulators providing feedback on the output of the control object, and uses the full and low order observers of Luenberger. To calculate the matrices of the regulators, we use the technique of linear matrix inequalities and generalize the Lyapunov stability concept (D - stability). The theorems are given which give necessary and sufficient conditions for D - stability of the controlled system. The constructive solution of the synthesis problem D - stabilizing (modal) regulators according to the measured output of the control object, based on the construction of observers of the state of the object of the complete and reduced order, is given. The solution is based on the use of the theory of linear matrix inequalities (LMI). For numerical simulation of the resulting modal regulators you can use effective methods of convex optimization and corresponding software that is included in a number of application packages, in particular, in the MatLab system. In this paper we describe methods for solving not only the direct problem of modal control, when the choice of parameters of a regulator is ensured by the coincidence of the roots of the characteristic equation of a closed system with a predefined set of complex numbers located on the left side of the complex plane, but also other problems of modal control, in which the requirement the exact placement of the roots in the left integrated half-plane is not superimposed, but only their membership in certain specified areas is required. Such areas, described by a system of linear matrix inequalities (LMI), are called LMI domains. Дается решение задачи построения модальных регуляторов для линейных многомерных систем, обеспечивающих D - устойчивость (асимптотическую устойчивость) объекта управления. Управление представлено в виде регуляторов, обеспечивающих обратную связь по выходу объекта управления, и использует наблюдатели Луенбергера полного и пониженного порядка. Для вычисления матриц регуляторов используется техника линейных матричных неравенств и обобщение понятия устойчивости по Ляпунову (D - устойчивость). Приведенные теоремы дают необходимые и достаточные условия D - устойчивости управляемой системы. В работе дается конструктивное решение задачи синтеза D - стабилизирующих (модальных) регуляторов по измеряемым выходом объекта управления, основанного на построении наблюдателей состояния объекта определенного порядка. Решение получено на основе использования теории линейных матричных неравенств (LMI). Для численного моделирования полученных модальных регуляторов можно использовать методы выпуклой оптимизации и соответствующее программное обеспечение, которое входит в ряд пакетов прикладных программ, в частности, в систему MatLab. Описаны методы решения не только прямой задачи модального управления, когда выбором параметров регулятора обеспечивается совпадение корней характеристического уравнения замкнутой системы с предварительно заданным набором комплексных чисел, расположенных в левой части комплексной плоскости, но и других задач модального регулирования, в которых требование точного размещения корней в левой комплексной полуплоскости уже не накладывается, а нужна только их принадлежность к некоторым заданным областям, описываемым системой линейных матричных неравенств и называемых LMI- областями. Дається розв’язок задачі побудови модальних регуляторів для лінійних багатовимірних систем, що забезпечують D- стійкість (асимптотичну стійкість) об'єкта керування. Керування представлено у вигляді регуляторів, що забезпечують зворотний зв'язок за виходом об'єкта керування, і використовує спостерігачі Луенбергера повного і зниженого порядку. Для обчислення матриць регуляторів використовується техніка лінійних матричних нерівностей і узагальнення поняття стійкості за Ляпуновим (D - стійкість). Наведені теореми, що дають необхідні і достатні умови D - стійкості керованої системи. В роботі дається конструктивний розв’язок задачі синтезу D - стабілізувальних (модальних) регуляторів за вимірюваним виходом об'єкта керування, заснований на побудові спостерігачів стану об'єкта певного порядку. Розв’язок отримано на основі використання теорії лінійних матричних нерівностей (LMI). Для чисельного моделювання отриманих модальних регуляторів можна використовувати ефективні методи опуклої оптимізації і відповідне програмне забезпечення, яке входить до ряду пакетів прикладних програм, зокрема, в систему MatLab. Описуються методи розв’язання не тільки прямої задачі модального керування, коли вибором параметрів регулятора забезпечується збіг коренів характеристичного рівняння замкненої системи з попередньо заданим набором комплексних чисел, розташованих в лівій частині комплексної площини, але і інших задач модального регулювання, в яких вимога точного розміщення коренів в лівій комплексної півплощині вже не накладається, а потрібна лише їх приналежність до деяких заданих областей. Такі області, описані системою лінійних матричних нерівностей, називаються LMI- областями.
  • Item
    Математичне моделювання процесу біологічного очищення забруднених вод як об’єктa автоматичого керування
    (ЦНТУ, 2017) Гончаренко, Б. М.; Лобок, О. П.; Сич, М. А.; Віхрова, Л. Г.; Goncharenko, B.; Lobok, O.; Sych, M.; Vihrova, L.
    Наведені та обґрунтовані прийняті припущення при складанні математичної моделі процесу. Представлена і розглянута структурно-параметрична схема технологічного процесу біологічного очищення забруднених вод. Наведена в диференціальному вигляді математична модель та дані роз’яснення складових. Вибрані вхідна (керувальна) та вихідна (керована) величини моделі за каналом керувального діяння. З метою подальшого полегшення розв’язку наводяться вираз математичної моделі у векторному вигляді та вираз керованої величини. Проведена лінеаризація моделі та наведений її лінеаризований вигляд. Наведені вирази дискретних операторів критерія якості керування процесом очищення, дробового - регулятора та системи керування вцілому. Наведені результати чисельного моделювання системи керування процесом очищення води на основі розробленої моделі. The assumptions made in the compilation of the mathematical model of the process are given and justified. The structural-parametric scheme of the technological process of biological treatment of polluted waters is presented and considered. A mathematical model is given in a differential form and explanations of its components are given. The input (control) and output (controlled) values of the model along the control action channel are selected. The expression of the mathematical model in vector form and the expression for the controlled quantity are given for further facilitating the solution. The linearization of the model is carried out and its linearized form is given. Expressions of discrete operators of the quality criterion for control of the cleaning process, fractional regulator and control system are given. The results of numerical simulation of the water treatment process control system based on the developed model are presented. The degree of efficiency in the application of fractional regulators as part of the automatic control system based on classical mathematical model of the process and the reasons for the high sensitivity of optimality criterion and transients on the order of fractional derivatives and integrals require further research.
  • Item
    Modeling of optimal automatic control of the process of biological clearing of polluted waters by fractional order regulators
    (ЦНТУ, 2017) Lobok, O.; Goncharenko, B.; Sych, M.; Vihrova, L.; Лобок, О. П.; Гончаренко, Б. М.; Сич, М. А.; Віхрова, Л. Г.
    The problem of modeling the control of the process of biological treatment of polluted waters using fractional - regulators is considered and solved. Optimum tunings of fractional regulators are obtained, the dynamics of transient processes of control action and the state of the purification system is investigated. Numerical simulation of fractional and classical control is carried out, a higher efficiency of fractional regulators is shown. Розглядається і розв’язується задача оптимального керування процесом біологічного очищення забруднених вод за допомогою дробових - регуляторів. Пропонується математичне моделювання процесу біологічного очищення як об'єкта керування, виводиться нелінійна динамічна модель керування та проводиться її лінеаризація. Модель керування має один вхід та один вихід. Вводиться до розгляду оптимальний критерій якості автоматичного керування за допомогою дробового регулятора функціонування біологічної системи очищення води. Отримані оптимальні параметри налаштування дробових - регуляторів. Досліджена динаміка перехідних процесів керувального впливу і стану системи очищення. Чисельне моделювання дробового - і класичного РID - керування проведене для підтвердження більш високої ефективності дробових регуляторів, що відображено в результатах досліджень.
  • Item
    Optimal control of linear dynamic distributed systems under uncertainty
    (ЦНТУ, 2017) Lobok, O.; Goncharenko, B.; Vihrova, L.; Лобок, О. П.; Гончаренко, Б. М.; Віхрова, Л. Г.
    The article considers the problems of synthesis of optimal control systems that operate in conditions of an uncertain information and are described by generalized equations in partial derivatives of parabolic type. Control has the form of feedback from the observed measurements for the implementation of which it is necessary to solve integral-differential equation of Riccati. Separately built distributed and concentrated limiting regulators and are recursive algorithm for determining the optimal control regarding changes in the number of observations. There is an algorithm designed for determining the required number of point regulators and their optimal location on the border of the field in which the quality criterion does not exceed a specified threshold. У статті розглянуті задачі синтезу оптимального керування системами, що функціонують в умовах невизначеної інформації й описуються узагальненими рівняннями в частинних похідних параболічного типу. Реальні об’єкти керування в більшості випадків функціонують в умовах невизначеності. При цьому часто відносно збурень, що діють на об’єкт, відсутня достовірна інформація щодо характеру самих збурень. Проблема нелінійності об’єкта керування при наявності запізнювання впливає на характер керованих динамічних процесів і суттєво впливає на вигляд та складність шуканих керувань. В цьому випадку, як правило, віддають перевагу мінімаксному або гарантованому управлінню, яке забезпечує достатню якість перехідних процесів за найгірших зовнішніх збурень. Для того, щоб забезпечити високу якість систем регулювання, необхідно використовувати більш точні математичні моделі об'єктів управління, які враховують не тільки час, але й просторові координати, а саме - системи з розподіленими параметрами. У статті розглянуті питання про побудову регуляторів для класу систем з розподіленими параметрами параболічного типу, щоб знайти конструктивне рішення проблеми мінімакса кордону синтезу розподіленої системи і управління точкою, а також знайти алгоритм для визначення кількості та оптимального розташування регуляторів точок. Керування має вигляд зворотного зв'язку від спостережуваних вимірів, для реалізації якого необхідно розв'язати інтегро-диференціальне рівняння типу Ріккаті. Окремо побудовані розподілені та зосереджені граничні регулятори, а також наведено рекурентний алгоритм визначення оптимального керування стосовно зміни числа спостережень. Розроблено алгоритм визначення необхідної кількості точкових регуляторів та їх оптимальне розташування на границі області, при яких критерій якості не перевищує заданого порогового значення.
  • Item
    Розроблення автоматизованої системи керування технологічними процесами виробництва хліба з використанням сценарного підходу
    (КНТУ, 2016) Гончаренко, Б. М.; Кишенько, В. Д.; Лобок, О. П.; Кронг, Є. В.; Віхрова, Л. Г.; Goncharenko, B.; Kischenko, V.; Lobok, O.; Kronh, Y.; Vikhrova, L.
    Розглянуті підходи до інтенсифікації хлібопекарської промисловості, яка забезпечує попит населення України на хлібобулочні вироби. Розв’язання задач поліпшення якості продукції в хлібопекарському виробництві, раціонального використання ресурсів і сировини, підвищення продуктивності технологічних ліній неможливе без автоматизації технологічних процесів на основі сучасних інформаційних технологій, передових досягнень в теорії та практиці автоматизованого керування. В статті розглянуті зміст та приклади сценаріїв абстрактного (А) та структурного (С) керування та їхня реалізація. Проведене представлення вхідних та вихідних змінних процесів у вигляді нечітких величин [1]. Сформоване графічне зображення А- та С-сценаріїв керування. Технологічні процеси промислового хлібопекарського виробництва є складним технологічним комплексом, характерними особливостями якого є високий ступінь невизначеності, велика розмірність, латентність показників якості сировини та напівфабрикатів, багатоцільова поведінка, коли пріоритетність цілей залежить від ситуації, яка виникає в залежності від стану об’єкта керування. Рекомендоване використання при автоматизації хлібопекарського виробництва сценаріїв та алгоритмів керування із застосуванням інтелектуальних механізмів сприятиме розв’язанню вищеозначених задач. Approaches to intensify the baking industry that provides consumer demand for bakery Ukraine. The article deals with the content and scripts abstract examples (A-) and structural (C-) controls and their implementation. A study represent input and output variables in a process of fuzzy variables. The current graphic representation of A- and C-control scenarios. Processes for industrial bakery production is a complex technological complex, theme which is the high degree of uncertainty, a large dimension latency indicators of quality of raw materials and semi-finished multi behavior when the priority targets depending on the situation that arises depending on the control object. Recommended use in bakery production automation scripts and control algorithms using intelligent mechanisms contribute to resolving the mentioned above problems. Problem solving improve product quality in the baking industry, rational use of resources and raw materials, improved performance of production lines is impossible without automation of technological processes based on modern information technology, the latest achievements in the theory and practice of automatic control.
  • Item
    Особливості синтезу робастних регуляторів для випадків повного та неповного вимірювання вектора стану об’єкта
    (КНТУ, 2013) Лобок, О. П.; Гончаренко, Б. М.; Віхрова, Л. Г.; Lobok, O.; Goncharenko, B.; Vihrova, L.
    Наведені визначення та відмінні особливості оптимальних робастних систем. Розглянуті види невизначеностей. Визначені норми робастної стійкості: H∞ і Н2 . Завдання синтезу робастного регулятора при параметричній невизначеності зводиться до розв’язання рівняння Лур’є-Ріккаті, що гарантує робастність на певній множині його параметрів. Наводиться фізичний сенс H∞ норми, як максимального значення амплітудно-частотної характеристики. Розглянутий зміст синтезу робастного керування у формі функції від стану і моменту часу для випадків повного і неповного вимірювання вектора стану об’єктів (серед інших і ільськогосподарського призначення). Для останніх розглянуті властивості спостерігачів. Are the definitions and characteristics of the optimal robust systems.The types of uncertainties. Set standards for Robust Stability: H∞ and H2. The problem of synthesis of robust controller with parametric uncertainty is reduced to the solution of the Riccati-Lurie, which guarantees robustness in a certain set of parameters. Provides the physical meaning of the H∞ norm as the maximum value of the amplitude-frequency response.Examined the content of the synthesis of robust control in the form of a function of the state and the point in time for the cases of complete and incomplete measurement of the state vector objects (among others, and for agricultural use).For the latter, we study the properties of observers.
  • Item
    Дослідження мінімаксного керування та спостереження теплових об’єктів сільськогосподарського призначення
    (КНТУ, 2013) Лобок, О. П.; Гончаренко, Б. М.; Слєзенко, А. М.; Lobok, O.; Goncharenko, B.; Slyezenko, A.
    Наводяться розв’язки задач мінімаксного керування та спостереження багатовимірного теплового об’єкта керування (напр. сушарна камера) за умов повних і точних, а також неповних і неточних вимірювань параметрів стану. Експериментально досліджені оптимальні керування, спостереження, стан координат та значення критеріїв оптимальності об’єкта за цих умов. Досліджені припустимі збурення для випадку неповних і неточних вимірювань, обчислені значення критеріїв і значення їхніх верхніх меж. Здійснений аналіз перехідних процесів (ПП) елементів матриць зворотного зв’язку для обох випадків вимірювань стану об’єкта. Здійснений аналіз ПП оптимальних керувань, станів системи, спостережень і оптимальних оцінок якості роботи мінімаксного фільтра Калмана-Бюсі. Досліджена оптимальна область припустимих збурень. Доведено, що синтезоване мінімаксне керування має запас стійкості більший від розрахованого. The solutions to the minimax control and monitor thermal dimensional object сontrol (e.g. drying chamber) in a comprehensive and accurate, as well as incomplete and inaccurate measurements of the state. Experimentally studied the optimal control, monitoring, and the values of the state of origin of the optimality criteria of the object in these conditions. Investigated admissible perturbations in the case of incomplete and inaccurate measurements, calculating the values of the criteria and the value of their upper limits. The analysis of transients matrix elements of feedback for both cases, the measurement object's state. The analysis of the transients optimal controls, system states, observations and assessments of the quality of the optimal minimax Kalman-Bucy filter. The optimal range of admissible perturbations. It is proved that the synthesized minimax control has a margin of stability, the larger of the calculated.