Збірники наукових праць ЦНТУ
Permanent URI for this communityhttps://dspace.kntu.kr.ua/handle/123456789/1
Browse
2 results
Search Results
Item Комбіновані методи обробки глибоких отворів(ЦНТУ, 2019) Свяцький, В. В.; Скрипник, О. В.; Сіса, О. Ф.; Конончук, С. В.; Свяцкий, В. В.; Скрипник, О. В.; Сиса, О. Ф.; Конончук, С. В.; Sviatskyi, V.; Skrypnyk, О.; Sisa, O.; Kononchuk, S.Наведено схеми розвантаження свердла, що основані на використанні комбінованої обробки „різання — пластична деформація” і підведенням мастильно-охолодного технічного засобу з надлишковим тиском. Способи вирішують задачі зниження складових технологічного навантаження і дозволяють розширити технологічні можливості процесу свердління по глибині обробки. Приведены схемы разгрузки сверла, основанные на использовании комбинированной обработки „резани – пластическая деформация” и подводом смазывающе-охлаждающего технического средства с избыточным давлением. Способы решают задачу снижения составляющих технологической нагрузки и позволяют расширить технологические возможности процесса сверления по глубине обработки. The drilling of deep openings is a labor-intensive technological process, especially when processing viscous materials. In the system "machine-fixture-tool-workpiece" with deep drilling in the most difficult conditions the tool – a drill. Closed processing volume, various functions, the implementation of which must provide the design of the tool, forced mode of cutting forced to work the drill body, its cutting and guiding elements with high stresses. Typically, the process of drilling deep openings is carried out on special or aggregate machines using a device containing a drill installed on a tubular stalk with ducts for chip removal and a lubricant receiving system for supplying a lubricating and cooling technical device under pressure. In the process of processing, the stem of the drill is under the influence of the axial component of the cutting force, which leads to its longitudinal bending and, consequently, to reduce the accuracy of the machining and stability of the tool. Optimization of the process of deep drilling is reduced, as a rule, to the removal of certain technical limitations on the stability, strength or stiffness of the drill. However, the possibility of increasing the stiffness of the tool due to the change in the shape of the cross section of the stem of the drill is currently sufficiently studied and practically exhausted. The above theoretical and experimental studies show that the control of the load of the tool stem along the axial component of the cutting force and the resistance forces is fundamentally possible with the use of processes of combined processing of openings. Developed methods of processing deep openings solve the problem of reducing the components of technological load and allow you to expand the technological capabilities of the drilling process at the depth of processing.Item Розмірна обробка електричною дугою бічної поверхні зносостійкого інструменту(ЦНТУ, 2018) Сіса, О. Ф.; Пукалов, В. В.; Юр’єв, В. В.; Сиса, О. Ф.; Юрьев, В. В.; Sisa, O.; Pukalov, V.; Yuryev, V.Виконано обґрунтування технологічної схеми формоутворення зовнішньої бічної поверхні пуансону, способом розмірної обробки електричною дугою з урахуванням особливостей фізичних механізмів їх утворення та гідродинамічних явищ в міжелектродному проміжку. Встановлені аналітичні зв’язки технологічних характеристик процесу розмірної обробки електричною дугою твердого сплаву ВК8 з режимами обробки і геометричними параметрами. Выполнено обоснование технологической схемы формообразования внешней боковой поверхности пуансона, способом размерной обработки электрической дугой с учетом особенностей физического механизма образования и гидродинамических явлений в межэлектродном промежутке. Установлены аналитические связи технологических характеристик процесса размерной обработки электрической дугой твердого сплава ВК8 с режимами обработки и геометрическими параметрами. The article is devoted to development of the technology and equipment for rough machining of hard-face puncheon's lateral surface with electrical arc as a highly efficient alternative to the conventional methods of rough machining. In order to extend the durability period of the sheet material blanking die, the strong wearproof materials should be used. The hard-face axial puncheons are used due to high strength, hardness and wearproofness. The puncheons are made of the cylindrical hard-face cores, with diameter ranging from 2...20 mm. Then they are grinded. The cores are made of hard alloys with wolfram carbide grain size less than 1 µm, and the 8...25% of cobalt binding content. The cores are produced by the hard-face powder pressing and further sintering in vacuum-compressor furnace. When sintering the cores shrink, followed with the contraction process. The core bending may reach up to 0.35 mm and more. Such curve cores are not used for grinding. Therefore, the problem is to find some optional technologies of treating the hard-face cores for the puncheons. It is suggested to remove the puncheon's lateral surface with electrical arc at the stage of the hard-face blank treatment. This allows removing large allowances of material along with the shortest treatment time. It is suggested to produce the puncheon lateral surface with roughness of Ra = 16…30 µm following rough machining. Thus, the large allowances of material are removed with the shortest treatment time. Here, the treatment cycle of the hard-face puncheon's lateral surface reduces by 1.4...1.8 times. The substantiation was made for the process flow diagram covering fabrication of the hard-face puncheon's lateral surface subject to specifics of the physical mechanism of formation and the hydrodynamic phenomena in the inter-electrode gap. The analytical links were determined between the technological specifications of the process featuring ВК8 alloy rough machining with electrical arc, the processing modes and geometrical parameters. The resulting models enable managing the capacity, specific capacity, specific consumption of electric power and the treated surface accuracy, along with forecasting and optimizing these parameters. The technical solution is offered enabling to expand the processing capacities of the hard-face puncheon's production.