Збірники наукових праць ЦНТУ

Permanent URI for this communityhttps://dspace.kntu.kr.ua/handle/123456789/1

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Зносостійкість оксидних шарів сформованих методом твердого анодування (hard anodic coatings) при зміцненні деталей агропромислової техніки
    (ЦНТУ, 2021) Студент, М. М.; Маркович, С. І.; Гвоздецький, В. М.; Задорожна, Х. Р.; Ковальчук, І. С.; Дзьоба, Ю. В.; Student, M.; Markovych, S.; Hvozdetskii, V.; Zadorozhna, K.; Kovalchuk, I.; Dzjoba, Yu.
    Синтез анодованого шару на сплаві алюмінію виконували у 20 % розчині сірчаної кислоти за температури -8…- оС. Під час анодування густина струму становила 5 A/дм2. Час анодування становив 60, 120 та 180 хв. Проводили металографічні дослідження та фазовий аналіз анодованих шарів. Зменшення вмісту вологи проводили за температури 400 оС впродовж 60 хв. Встановлено, що оксидний шар (Al2O3H2O) під час твердого анодування на алюмінієвих сплавах формують не лише йони кисню, які утворюються внаслідок розкладу води, а також його нейтральні атоми, які формуються з розчину. Виявлено, із збільшенням часу анодування зростає мікротвердість та товщина шару. Після термічної обробки кількість молекул води зменшується і мікротвердість зростає. Підвищення мікротвердості сприяє зростанню опору абразивному зношуванню. In the last years in an agroindustrial production there is a tendency on replacement of cast-iron details on a detail from aluminium alloys at execution on поверхю of strengthening layer. An ironmaking is accompanied the extrass of plenty of carbon dioxide in an atmosphere. Substituting of cast-iron details by aluminium will decrease the amount of extrass of carbon dioxide in an atmosphere, and substantially will decrease weight of constructions. Hard anodization is used practically in all of industries of industry: avsup and motor-car industry; hydraulics; electronics; heater platforms and tiles; medical devices. This method will allow to promote mechanical descriptions of aluminium alloys the method of forming of the anodized layers on their surface. The synthesis of the anodized layer on an aluminum alloy was performed in a 20% solution of sulfuric acid at a temperature of (-8…-2 °C). During anodizing, the current density was 5 A / dm2. The anodizing times were 60, 120 and 180 minutes. Conducted metallographic studies and phase analysis of the layers. Reduction of moisture content was performed at a temperature of 400°C for 60 minutes. It was found that the oxide layer (Al2O3 · H2O) during hard anodizing on aluminum alloys forms not only oxygen ions, which are formed due to the decomposition of water, but also its neutral atoms, which are formed from the solution. It was found that the microhardness and layer thickness increase with increasing anodizing time. After heat treatment, the number of water molecules decreases and the microhardness increases. Increasing the microhardness increases the resistance to abrasive wear. Conclusions: The layer of oxide in the composition contains to three molecules of water, which reduce a microhardness, and and wearproofness of the anodized layer substantially. The layers of oxide on aluminium alloys are formed the method of cold anodization at low temperatures -8…-4 °C to 6 time promote abrasive wearproofness of aluminium alloy of D16. Heat treatment for the temperatures of 400°C during 2 hours promotes abrasive wearproofness of aluminium alloy on an order.
  • Item
    Вплив складу електроліту на характеристики синтезованого під час твердого анодування алюмінію оксидного шару
    (ЦНТУ, 2021) Студент, М. М.; Гвоздецький, В. М.; Веселівська, Г. Г.; Задорожна, Х. Р.; Мардаревич, Р. С.; Сірак, Я. Я.; Маркович, С. І.; Student, M.; Hvozdetskii, V.; Veselivska, H.; Zadorozhna, K.; Mardarevych, R.; Sirak, Ya.; Markovych, S.
    Тверде анодування виконано за температури –4...0 °С впродовж 60 хв. Як базовий електроліт використано 20%-й водний розчин H2SO4. Під час анодування густина струму становила 5 A/дм2. Щоб з’ясувати вплив сильних окиснювачів на характе¬ристики анодних шарів (оксидних), в електроліт додавали 30; 50; 70 та 100 г/л перекису водню (H2O2). В деяких випадках його продували озоно-повітряною сумішшю з розрахунку 5 мгхв/л озону. Встановлено, що оксидний шар (Al2O3H2O) під час твердого анодування на алюмінієвих сплавах формують не лише іони кисню, які утворюються внаслідок розкладу води, а також його нейтральні атоми, які форму¬ються через розкладання перекису водню та озону. Виявлено, що перекис водню, а також продування електроліту збільшують товщину та мікротвердість анодного шару на 50% внаслідок зниження вдвічі кількості молекул води в оксиді алюмінію. Перекис водню та озон, очевидно, зменшують і товщину бар’єрного шару покриття, крізь який проникають іони кисню та алюмінію, які, з’єднуючись, формують оксидний шар. The aim of the study. By introducing strong oxidizers to the electrolyte form anode layers on the surface of aluminum with increased mechanical characteristics. To determine the effect of the duration of the formation of an anode layer to change its properties. Hard anodizing was performed at a temperature of –4...0°C for 60 min. A 20% aqueous solution of H2SO4 was used as the base electrolyte. During anodizing, the current density was 5 A/dm2. To determine the effect of strong oxidants on the characteristics of the anode layers (oxide), 30 were added to the electrolyte; 50; 70 and 100 г/лof hydrogen peroxide (H2O2). In some cases, it was purged with an ozone-air mixture at a rate of 5 mgmin/l of ozone. It was found that the oxide layer (Al2O3H2O) during hard anodizing on aluminium alloys forms not only oxygen ions, which are formed by the decomposition of water, but also neutral oxygen atoms, which are formed by the decomposition of hydrogen peroxide and ozone. It was found that hydrogen peroxide, as well as blowing the electrolyte with an air-ozone mixture increase the thickness and microhardness of the anodized layer by 50% due to the reduction of the number of water molecules in alumina by half. Hydrogen peroxide and ozone apparently also reduce the thickness of the barrier layer of the coating, through which oxygen and aluminium ions penetrate and which, when combined, form an oxide layer. Conclusions. 1. It has been established that aluminum anodizing for 60 minutes. provides an increase in its properties. Changing the composition of the electrolyte contributes to the growth of microhardness in 1.2 ... 1.7 times. The resistance of abrasive wear increases with the content of different amounts of applications in the electrolyte and the maximum is at 30 g / l H2O2. Blowing the base electrolyte ozone provides an increase in the microhardness of the layer from 380 to 510 HV. The higher loss of mass for higher microhardness is caused by an increase in porosity of coatings. 2. It is determined that an increase in the anodization time in the baseline electrolyte to 120 and 180 minutes contributes to the growth of microhardness to 640 HV compared to an anodized layer for 60 minutes. Loss of mass in the study of abrasive wear is less than 3-4 times with longer anodation than at 60 minutes in the baseline electrolyte.