Збірники наукових праць ЦНТУ

Permanent URI for this communityhttps://dspace.kntu.kr.ua/handle/123456789/1

Browse

Search Results

Now showing 1 - 6 of 6
  • Item
    Концепція оцінки ергономічної стійкості транспортного потоку великих міст з урахуванням динамічності зміни впливових факторів
    (ЦНТУ, 2024) Войтов, В. А.; Кравцов, А. Г.; Войтов, А. В.; Бережна, Н. Г.; Сисенко, І. І.; Кривенко, Л. Ф.; Бабарика, І. Г.; Vojtov, V.; Kravtsov, A.; Voitov, A.; Berezhna, N.; Sysenko, I.; Kryvenko, L.; Babaryka. I.
    Представлено концепцію оцінки стійкості руху транспортних потоків з урахуванням динамічності зміни впливових факторів. У роботі розроблено методичний підхід прогнозування завантаженості вулиць великих міст. Методичний підхід враховує коливання динамічності транспортного потоку у вигляді зміни прискорення руху автомобілів в потоці та коливання зміни інфраструктури дорожнього середовища, яке пов`язане з кількістю світлофорів, пішохідних переходів та кількістю смуг руху. Сформульовано концепцію моделювання та прогнозування стійкості транспортних потоків великих міст до утворення заторів. Обґрунтовано основні складові концепції, за якими поетапно виконується така оцінка з урахуванням динамічності зміни впливових факторів. Запропонована концепція відрізняється від відомих тим, що враховує коливання параметрів транспортного потоку – щільності та швидкості руху автомобілів, як функції часу. The methodological approach of forecasting the congestion of the streets of large cities, taking into account the fluctuations in the density of traffic flows and the speed of movement of cars in the flow, received further development. The methodical approach takes into account fluctuations in the dynamics of the traffic flow in the form of changes in the acceleration of the movement of cars in the flow and fluctuations in changes in the infrastructure of the road environment, which is associated with the number of traffic lights, pedestrian crossings and the number of lanes for the movement of vehicles. Through modeling, it was found that increasing the acceleration values of cars in the stream significantly increases the range of robustness. At low values of acceleration of cars, the reserve of resistance to the formation of traffic jams decreases, which negatively affects the traffic flow, there is a probability of the formation of traffic jams. The presence of fluctuations in the density of the traffic flow and the speed of movement of cars in the flow, due to changes in the acceleration of cars, allows making adjustments to the value of the robustness criterion ets.
  • Item
    Прогнозування завантаженості вулиць великих міст з урахуванням коливань щільності та швидкості руху транспортних потоків
    (ЦНТУ, 2024) Войтов, В. А.; Бережна, Н. Г.; Сисенко, І. І.; Войтов, А. В.; Кривенко, Л. Ф.; Козенок, А. С.; Vojtov, V.; Berezhna, N.; Sysenko, I.; Voitov, A.; Kryvenko, L.; Kozenok, A.
    У роботі розроблено методичний підхід прогнозування завантаженості вулиць великих міст з урахуванням коливань щільності транспортних потоків та швидкості руху автомобілів, які пов’язані з «годинами пік». Методичний підхід, на відміну від раніше відомих, доповнює відомий критерій робастності, розроблений авторами у попередніх публікаціях, що дозволяє підвищити точність прогнозування виникнення заторів. Запропоновано функції зміни щільності транспортного потоку та швидкості руху транспортних засобів у транспортному потоці, що змінюються у часі. Крім реального часу функції містять змінні параметри у вигляді амплітуди коливань та періоду коливань. Це дозволяє зробити адаптацію моделі прогнозування до реальної дорожньої мережі з урахуванням періоду завантаженості мережі та інфраструктури доріг. The work has developed a methodical approach for forecasting the congestion of the streets of large cities, taking into account the fluctuations in the density of traffic flows and the speed of movement of cars in the traffic flow, which are associated with "peak hours". The methodological approach, unlike the previously known ones, complements the well-known robustness criterion developed by the authors in previous publications, which allows to increase the accuracy of forecasting the occurrence of traffic jams.
  • Item
    Дослідження математичної моделі стійкості транспортного потоку на ділянках дорожньої мережі міста
    (ЦНТУ, 2023) Горяїнов, О. М.; Козенок, А. С.; Бережна, Н. Г.; Сисенко, І. І.; Бабич, І. А.; Войтов, О. В.; Goryayinov, О.; Kozenok, А.; Berezhna, N.; Sysenko, I.; Babych, I.; Voytov, O.
    У роботі наведено результати дослідження математичної моделі стійкості транспортного потоку на ділянках вулично-дорожньої мережі міста при зміні зовнішніх факторів. На підставі результатів моделювання запропоновано всі фактори, що впливають на стійкість транспортного потоку, розділити на три групи. Перша група факторів характеризує конструкцію транспортного засобу. Другу групу факторів названо факторами часу, які враховують: час реакції водія на зміну дорожньої ситуації; час на маневр, який може використовувати автомобіль у разі зміни дорожньої ситуації; сумарний час затримок під час руху за маршрутом. Третя група факторів враховує особливості побудови інфраструктури дорожнього середовища. На підставі результатів моделювання представлено рейтинг факторів, що впливають на величину запасу стійкості транспортного потоку. The paper presents the results of the research of the mathematical model of the stability of the traffic flow on the sections of the city's street and road network when external factors change. Based on the modeling results, it is proposed to divide all factors affecting the stability of the traffic flow into three groups. The first group of factors characterizes the construction of the vehicle: the length of the vehicle, the weight of the vehicle, the power of the engine. The second group of factors is called time factors, which take into account: the driver's reaction time to a change in the road situation; time for a maneuver that can be used by the car in case of a change in the road situation; the total time of delays while driving along the route. The third group of factors takes into account the peculiarities of the construction of the infrastructure of the road environment. Such factors include: the number of traffic lanes on the roadway; the number of pedestrian crossings and traffic lights.
  • Item
    Обгрунтування критерію стійкості транспортного потоку на дільницях дорожньої мережі
    (ЦНТУ, 2023) Кравцов, А. Г.; Ларіна, Т. Ф.; Горяїнов, О. М.; Козенок, А. С.; Городецька, Т. Е.; Бабич, І. А.; Кravtsov, А.; Larina, T.; Goryayinov, О.; Kozenok, A.; Gorodetska, T.; Babych, I.
    У роботі отримано критерій оцінки стійкості транспортного потоку на різних ділянках вулично- дорожньої мережі. Аналіз критерію дозволяє сформулювати параметри, від яких залежить стійкість. Показано, що на стійкість транспортного потоку впливають щільність та інтенсивність транспортного потоку. Їх необхідно розраховувати для кожної ділянки дорожньої мережі чи магістралі як коефіцієнти підсилення. Дано визначення робастності транспортного потоку (англ. robust range) – це безрозмірна величина, яка характеризує діапазон сталого руху транспортних засобів на ділянках дорожньої мережі з урахуванням її інфраструктури, щільності та інтенсивності руху без затримок та заторів. Показано, що розроблений критерій робастності необхідно застосовувати при аналізі дорожньої мережі на виникнення затримок під час руху та заторів, а також при проектуванні нової міської дорожньої мережі. The work considers the justification and obtaining the criteria for assessing the stability of the traffic flow on various sections of the street and road network under the influence of external disturbances. Analysis of the criterion allows to formulate the parameters on which stability depends. As follows from the expressions by which the criterion is calculated, the stability of the traffic flow is affected by the density and intensity of the traffic flow. They must be calculated for each section of the road network or highway in the form of amplification factors. The time constants depend on the qualification and psychophysiological properties of the driver, the degree of his fatigue, the dynamic properties of the car and road conditions. It is shown that when the value of the criterion is equal to one, the transport flow functions on the verge of loss of stability. If the value of the criterion is less than one, the traffic flow has lost its stability, traffic stops - traffic jam. If the value of the criterion is greater than one, the transport flow is stable, i.e. functions without delays and traffic jams. The larger the value of the criterion, the greater the margin of stability. Based on the obtained results of theoretical studies, the robustness of the traffic flow is defined. The robustness of the traffic flow (English robust range) is a dimensionless value that characterizes the range of stable movement of vehicles on sections of the road network, taking into account its infrastructure, density and intensity of traffic without delays and traffic jams. It is shown that the developed criterion of robustness must be applied in the analysis of the road network for the occurrence of delays during traffic and traffic jams, as well as in the design of a new urban road network. The obtained result differs from the known ones given in the review of literary sources in that it allows to determine the limits of the loss of stability - the formation of traffic jams - through modeling. Determining the limit values of traffic flow density and intensity, their gradients, accounting for multi-lane traffic will allow developing measures to prevent traffic jams.
  • Item
    Оцінка ергономічної стійкості транспортного потоку на дільницях дорожньої мережі. Ідентифікація математичної моделі
    (ЦНТУ, 2023) Войтов, В. А.; Кравцов, А. Г.; Карнаух, М. В.; Горяїнов, О. М.; Козенок, А. С.; Бабич, І. А.; Vojtov, V.; Кravtsov, А.; Karnaukh, М.; Goryayinov, О.; Kozenok, А.; Babych, І.
    Обґрунтовано структуру математичної моделі оцінки ергономічної стійкості транспортного потоку на різних ділянках дорожньої мережі при дії зовнішніх збурень. Математична модель враховує динаміку розвитку процесу. Крім градієнтів швидкості та щільності транспортних потоків враховуються динамічні властивості транспортних засобів та багатосмугова дорожня мережа, а також час затримок на пішохідних переходах та світлофорах. Показано, що динамічні характеристики транспортного потоку описуються диференційним рівнянням третього порядку. Отримано вирази для визначення коефіцієнтів підсилення та постійних часу, що входять у диференційне рівняння. Обґрунтовані параметри, які є вхідним впливом та визначають стійкість транспортного потоку, – це градієнти щільності та швидкості потоку. Обґрунтовані параметри, що характеризують реакцію транспортного потоку на обурення, – це постійні часу, фізичний сенс яких полягає в інерційності всіх ланок, що входять у модель. The paper discusses the structure of the mathematical model featuring assessment of the ergonomic stability of the traffic flow in various sections of the road network under the influence of external disturbances, which is the result of structural identification. The mathematical model differs from the known ones in that it takes into account the dynamics of the process development. In addition to the gradients of speed and density of traffic flows, the research takes into account the dynamic properties of vehicles and the multi-lane road network, as well as the time of delays at pedestrian crossings and traffic lights. The dynamic properties of the traffic flow are described with a third-order differential equation. The mathematical model is parametrically identified; expressions for determining the gains and time constants included in the differential equation are obtained. The input parameters impacting and affecting the stability of the traffic flow are substantiated – these are the gradients of the density and speed of the flow. The parameters characterizing the response of the traffic flow to disturbances are substantiated – these are time constants, the physical meaning of which is the inertia of all links included in the model. The study presents expressions for determining the gains and time constants included in the differential equation. The gain coefficient K1 characterizes the degree of influence of the density of the traffic flow on the reaction time of the driver. The gain coefficient K2 characterizes the influence of the degree of dynamism of the traffic flow on the time of delays during movement and loss of stability. The gain coefficient K3 characterizes the degree of influence of a change in the traffic situation on the delay time when moving in the stream and loss of stability. The value of the time constant T1 characterizes the inertia of the driver depending on the density and intensity of the traffic flow. The value of the time constant T2 characterizes the inertia of the car and is expressed in the ability to maneuver. The value of the time constant T3 characterizes the inertia of changing the traffic situation.
  • Item
    Підвищення точності вимірювання силових параметрів при діагностуванні гальмівних систем автомобілів
    (ЦНТУ, 2019) Дубовик, В. О.; Невдаха, Ю. А.; Василенко, І. Ф.; Богатирьов, Д. В.; Дубовик, В. А.; Василенко, И. Ф.; Богатирев, Д. В.; Dubovyk, V.; Nevdakha, Yu.; Vasylenko, I.; Bohatyrov, D.
    Сучасні стенди з біговими барабанами при контролі гальмівної системи автомобіля не завжди дають об'єктивну оцінку її технічного стану, з причини виникнення великих похибок вимірювання силових параметрів, що характеризують гальмівну ефективність і стійкість автомобіля при гальмуванні. Розробці динамічних моделей гальмівної системи автомобіля присвячена досить велика кількість досліджень. При цьому питання відносного розташування вісі автомобіля і стенду майже не розглядаються, а це приводе до зниження точності визначення гальмівних сил при діагностуванні. Цим пояснюється великі розбіжності значень гальмівних сил при випробуваннях в стендових і дорожніх умовах. В дослідженні проведено уточнення динамічної моделі, що дозволяє моделювати процес гальмування автомобіля з непаралельністю його діагностуємої вісі відносно вісі стенда, і визначати залежності точності вимірювання силових параметрів від величини кута їх взаємної непаралельності. Таке доповнення динамічної моделі суттєво уточнює розрахунки процесу гальмування автомобільного колеса на гальмівному стенді з біговими барабанами. Современные стенды с беговыми барабанами при контроле тормозной системы автомобиля не всегда дают объективную оценку ее технического состояния, по причине возникновения больших погрешностей измерения силовых параметров, характеризующих тормозную эффективность и устойчивость автомобиля при торможении. Разработке динамических моделей тормозной системы автомобиля посвящено достаточно большое количество исследований. При этом вопрос относительного расположения оси автомобиля и стенда почти не рассматриваются, а это приводит к снижению точности определения тормозных сил при диагностировании. Этим объясняется большие различия значений тормозных сил при испытаниях в стендовых и дорожных условиях. В исследовании проведено уточнение динамической модели, позволяющей моделировать процесс торможения автомобиля с непараллельностью его диагностируемой оси относительно оси стенда, и определять зависимости точности измерения силовых параметров от величины угла их взаимной непараллельности. Такое дополнение динамической модели существенно уточняет расчеты процесса торможения автомобильного колеса на тормозном стенде с беговыми барабанами. Modern stands with jogging drums in the control of the brake system of the car do not always give an objective assessment of its technical condition, due to the large errors in the measurement of the power parameters that characterize the brake efficiency and stability of the car during braking. A considerable amount of research is devoted to the development of dynamic models of the car's braking system. In this case, the issues of relative positioning of the axles of the car and the stand are almost not considered, and this leads to a decrease in the accuracy of determination of braking forces at diagnosis. This explains the large differences in the values of the braking forces when tested in bench and road conditions. Therefore, the purpose of the article is to improve the accuracy of measurement of power parameters in the diagnosis of brake systems of cars. For analytical research, the car is presented as a vibrating system with a sprung mass in the form of a solid body, which has three degrees of freedom. The suspension of the car is presented in the form of parallel working elastic elements and dampers. The model does not take into account the effect of lateral forces on the car. Particular attention is paid to the process of interaction of wheels with the running drums of the stand in the longitudinal direction. The model assumes the following assumptions: in the process of calculations simulated the braking of not all axles of the car, but only one; the body of the car is a solid body, the mass of which affects the brake axle of the car; unbalance and gyroscopic moments of rotating masses of the car are zero; points of contact of tires with the reference surface are taken in the middle of the tire imprints on the support rollers of the stand. non-parallelism. This addition to the dynamic model significantly clarifies the calculations of the process of braking the car wheel on the brake stand with treadmill. The developed dynamic model allows to simulate the process of braking the car with the parallelism of its diagonal axis relative to the axis of the stand, and to determine the dependence of the accuracy of measurement of power parameters on the magnitude of the angle of their mutual non-parallelism. This addition to the dynamic model substantially clarifies the calculations of the process of braking the car wheel on the brake stand with treadmill.