Збірники наукових праць ЦНТУ
Permanent URI for this communityhttps://dspace.kntu.kr.ua/handle/123456789/1
Browse
4 results
Search Results
Item Optimal control of nonlinear stationary systems at infinite control time(ЦНТУ, 2021) Goncharenko, B.; Vikhrova, L.; Miroshnichenko, M.; Гончаренко, Б. М.; Віхрова, Л. Г.; Мірошніченко, М. С.The article presents a solution to the problem of control synthesis for dynamical systems described by linear differential equations that function in accordance with the integral-quadratic quality criterion under uncertainty. External perturbations, errors and initial conditions belong to a certain set of uncertainties. Therefore, the problem of finding the optimal control in the form of feedback on the output of the object is presented in the form of a minimum problem of optimal control under uncertainty. The problem of finding the optimal control and initial state, which maximizes the quality criterion, is considered in the framework of the optimization problem, which is solved by the method of Lagrange multipliers after the introduction of the auxiliary scalar function - Hamiltonian. The case of a stationary system on an infinite period of time is considered. The formulas that can be used for calculations are given for the first and second variations. It is proposed to solve the problem of control search in two stages: search of intermediate solution at fixed values of control and error vectors and subsequent search of final optimal control. The solution of -optimal control for infinite time taking into account the signal from the compensator output is also considered, as well as the solution of the corresponding matrix algebraic equations of Ricatti type. В статті наведене вирішення проблеми синтезу керування для динамічних систем, які описуються лінійними диференційними рівняннями, що функціонують у відповідності з інтегрально-квадратичним критерієм якості в умовах невизначеності. Зовнішні збурення, похибки та початкові умови при цьому належать певній множині невизначеностей. Тому проблема пошуку оптимального керування у вигляді зворотного зв’язку за виходом об’єкта представлена у вигляді мінімаксної задачі оптимального керування за умов невизначеностей. Завдання пошуку оптимального керування і початкового стану, які максимізують критерій якості, розглянуто в рамках оптимізаційної задачі, яку розв’язано методом множників Лагранжа після введення допоміжної скалярної функції – гамільтоніана. Розглянуто випадок стаціонарної системи на нескінченному відтинку часу. Приведені для перших та других варіацій формули, які можуть використовуватися для розрахунків. Запропоновано задачу пошуку керування розв’язувати в два етапи: пошук проміжного розв’язку при фіксованих значеннях векторів керування та похибки і наступний пошук остаточного оптимального керування. Розглянуте також розв’язання -оптимального керування на нескінченому часі з врахуванням сигналу з виходу компенсатора, а також – розв’язання відповідних матричних алгебраїчних рівнянь типу Рікатті.Item Зведення задачі мінімаксного керування лінійними нестаціонарними системами до H∞ – робастного шляхом динамічної гри(ЦНТУ, 2020) Лобок, О. П.; Гончаренко, Б. М.; Віхрова, Л. Г.; Lobok, O.; Goncharenko, B.; Vihrova, L.; Лобок, А. П.; Гончаренко, Б. Н.; Вихрова, Л. Г.В роботі розв’язана задача синтезу мінімаксного керування для динамічних, описаних системою лінійних диференційних рівнянь (з врахуванням стану, керувань, збурень та початкових умов, з наведеним рівнянням спостереження включно)об’єктів,що функціонують у відповідності з інтегрально- квадратичним критерієм якості в умовах невизначенності. Припускалося, що зовнішні збурення, похибки та початкові умови належать певній множині невизначеностей. Задача пошуку оптимального керування у вигляді зворотного по виходу об’єктазв’язку, який мінімізує критерій функціонування, представлена у вигляді мінімаксної задачі оптимального керування за умов невизначеностей. За відсутності готових шляхів розв’язання показане зведення даної задачі до задачі H∞ - керування при найбільш несприятливих збуреннях, а крім того і до динамічної ігрової задачі з нулевою сумою та визначеною ціною гри, та наведена стратегія її розв’язання, щопропонує шлях до нових результатів. Завдання пошуку оптимального керування і початкового стану, які максимізують критерій якості, розглянуто в рамках оптимізаційної задачі, яку розв’язано методом множників Лагранжа після введення допоміжної скалярної функції – гамільтоніана. Показано, що для знаходження максимального значення критерію може бути використана або необхідна умова екстремуму першого роду, що залежить від співвідношення першої варіації критерію та перших варіацій векторів керування і початкового стану або також необхідна умова екстремуму другого роду, що залежить від знаку другої варіації. Приведені для перших та другихваріацій формули, які можуть використовуватися для розрахунків. Запропоновано задачу пошуку керування розв’язувати в два етапи: пошук проміжного розв’язку при фіксованих значеннях векторів керування та похибки і наступний пошук остаточного оптимального керування. Розглянуте також розв’язання H∞ - оптимального керування на нескінченому часі з врахуванням сигналу з виходу компенсатора, а також – розв’язання відповідних матричних алгебраїчних рівнянь типу Рікатті. The problem of synthesis of minimax control for the dynamic, described by the linear system of differential equations (taking into account the state, controls, perturbations and initial conditions, with the given equation of observation inclusive) of objects functioning in accordance with the integral-quadratic quality criterion in uncertainty is solved in the work. External perturbations, errors, and initial conditions were assumed to belong to a number of uncertainties. The task of finding optimal control in the form of a feedback object that minimizes the performance criterion is presented in the form of a minimum maximal uncertainty control problem. In the absence of ready-made solution paths, this problem is reduced to a H∞ - control problem under the most unfavorable disturbances, and in addition to a dynamic game problem with zero sum and a certain price for the game, and a strategy for solving it is proposed that offers a way to new results. The problem of finding the optimal control and the initial state that maximize the quality criterion is considered in the framework of the optimization problem solved by the Lagrange multiplier method after introducing the auxiliary scalar function, the Hamiltonian. It is shown that to find the maximum value of the criterion, either the necessary condition of the extremum of the first kind can be used, which depends on the ratio of the first variation of the criterion and the first variations of the control vectors and the initial state, or also the necessary condition of the extremum of the second kind, which depends on the sign of the second variation. For the first and second variations, formulas are given that can be used for calculations. It is suggested to solve the control search problem in two steps: search for an intermediate solution at fixed values of control vectors and errors, and then search for final optimal control. Consideration is also given to solving H∞ - optimal control for infinite control time with respect to the signal from the compensator output, as well as solving the corresponding Riccati matrix algebraic equations. В работе решена задача синтеза минимаксного управления для динамических, описанных системой линейных дифференциальных уравнений с учетом состояния, управления, возмущений, начальных условий и приведенного уравнения наблюдения включительно, объектов, функционирующих в соответствии с интегрально-квадратичным критерием качества. Предполагалось, что внешние возмущения, погрешности и начальные условия принадлежат некоторому множеству неопределенностей. Задача поиска оптимального управления в виде обратной по выходу связи, которая минимизирует критерий функционирования, представлена в виде минимаксной задачи оптимального управления в условиях неопределенности. При отсутствии готовых путей решения показано сведение данной задачи к задаче H∞ - управления при наиболее неблагоприятных возмущениях, а кроме того, к динамической игровой задаче с нулевого суммой и определенной ценой игры, и приведена стратегия ее решения, предлагающая путь к новым результатам. Задача поиска оптимального управления и начального состояния, которые максимизируют критерий качества, рассмотрена в рамках оптимизационной задачи, решенной методом множителей Лагранжа после введения вспомогательной скалярной функции - гамильтониана. Показано, что для нахождения максимального значения критерия может быть использовано или необходимое условие экстремума первого рода, которое зависит от соотношения первой вариации критерия и первых вариаций векторов управления и начального состояния или также необходимое условие экстремума второго рода, которое зависит от знака второй вариации. Для первых и вторых вариаций приведены формулы, которые могут использоваться для расчетов. Предложено задачу поиска минимаксного управления решать в два этапа: поиск промежуточного решения при фиксированных значениях векторов управления и погрешности и последующий поиск окончательного оптимального управления. Рассмотрено также нахождение H∞ - оптимального управления на бесконечном отрезке времени с учетом сигнала с выхода компенсатора, а также– решения соответствующих матричных уравнений типа Рикатти.Item Особливості синтезу робастних регуляторів для випадків повного та неповного вимірювання вектора стану об’єкта(КНТУ, 2013) Лобок, О. П.; Гончаренко, Б. М.; Віхрова, Л. Г.; Lobok, O.; Goncharenko, B.; Vihrova, L.Наведені визначення та відмінні особливості оптимальних робастних систем. Розглянуті види невизначеностей. Визначені норми робастної стійкості: H∞ і Н2 . Завдання синтезу робастного регулятора при параметричній невизначеності зводиться до розв’язання рівняння Лур’є-Ріккаті, що гарантує робастність на певній множині його параметрів. Наводиться фізичний сенс H∞ норми, як максимального значення амплітудно-частотної характеристики. Розглянутий зміст синтезу робастного керування у формі функції від стану і моменту часу для випадків повного і неповного вимірювання вектора стану об’єктів (серед інших і ільськогосподарського призначення). Для останніх розглянуті властивості спостерігачів. Are the definitions and characteristics of the optimal robust systems.The types of uncertainties. Set standards for Robust Stability: H∞ and H2. The problem of synthesis of robust controller with parametric uncertainty is reduced to the solution of the Riccati-Lurie, which guarantees robustness in a certain set of parameters. Provides the physical meaning of the H∞ norm as the maximum value of the amplitude-frequency response.Examined the content of the synthesis of robust control in the form of a function of the state and the point in time for the cases of complete and incomplete measurement of the state vector objects (among others, and for agricultural use).For the latter, we study the properties of observers.Item Алгоритм синтезу оптимальних робастних регуляторів(КНТУ, 2014) Гончаренко, Б. М.; Віхрова, Л. Г.; Goncharenko, Boris; Vihrova, LarisaРозглядається задача побудови оптимального робастного керування у вигляді зворотного зв'язку від стану лінійної динамічної системи, яке мінімізує інтегрально-квадратичний функціонал при найбільш несприятливих збуреннях системи. Отримано однопараметричне сімейство мінімаксних регуляторів, при яких заданий критерій не перевищує деякого граничного значення. Оптимальне мінімаксне керування знаходиться шляхом пошуку мінімально допустимого порогового значення функціоналу за допомогою чисельних ітераційних методів. The problem of construction optimal robust control as a feedback connection from the state of linear dynamic system, which minimizes the integral square functional under the most adverse perturbations of the system is considered. Received the one-parameter familyof minimax controllers vor which a given criterion does not exeed a certain limit. Minimax optimal control sought by searching the minimum threshold functionality using numerical iterative methods.