Конструювання, виробництво та експлуатація сільськогосподарських машин. Загальнодержавний міжвідомчий науково-технічний збірник.
Permanent URI for this communityhttps://dspace.kntu.kr.ua/handle/123456789/19
Ідентифікатор медіа: R30-03925 (рішення Національної ради України від 25.04.2024 р. № 1418).
Мови видання: українська, російська, англійська, періодичність - один раз на рік.
Browse
2 results
Search Results
Item Використання сучасних систем САПР при проектуванні сільськогосподарських машин(ЦНТУ, 2019) Трикін, Д. М.; Мороз, С. М.; Васильковська, К. В.; Карпушин, С. О.; Трыкин, Д. М.; Мороз, С. Н.; Васильковская, К. В.; Карпушин, С. А.; Trykin, D.; Moroz, S.; Vasylkovska, K.; Karpushyn, S.В статті розглянуто використання сучасних методів конструювання сільськогосподарських машин з використанням сучасного програмного забезпечення систем САПР, зокрема CAD SolidWorks, на прикладі моделі лапи ґрунторозпушувача. Програма дозволяє не тільки визначити небезпечні зони моделі, а й оптимізувати конструкцію. В статье рассмотрено использование современных методов конструирования сельскохозяйственных машин с использованием современного программного обеспечения систем САПР, в том числе CAD SolidWorks на примере разработки конструкции лапы почворыхлителя. Программа позволяет не только определить опасные зоны модели, но и оптимизировать конструкцию. For faster creation of new models of machines, manufacturers use modern CAD systems that allow creating not only drawings but also 3D models in a short time. It allows you to get a clear idea of both working bodies, units and mechanisms, and the machine as a whole. A large set of various tools for building elements and editing, analyzing models and assemblies, creating assemblies allow you to create not only drawings of parts, units, mechanisms and machines in a short time, but also to create their electronic catalogues and a complete set of specifications. These programs include SolidWorks. SolidWorks Simulation is a structural analysis tool that provides modelling solutions for linear and nonlinear static analysis, frequency analysis, stability, temperature analysis, fatigue, impact tests, linear and nonlinear dynamic analysis, and also optimization analysis. For example, select the paw of the soil ripper. We create a general model assembly that will be tested for strength and rigidity by external forces. In the toolbar, activate the Simulation toolbar, in which we select New Research. In the Property Manager window, select Static, and in the Apply Material tab, select the materials for each detail. We secure the assembly with the Fixing Advisor tool and point to the holes that secure the frame in the frame. In the External Load Consultant tool, select Pressure and specify the amount of force and its direction. In the Type property manager, we select Pressure Ranges and specify them. In the property manager window, The value of pressure indicates the magnitude and direction of forces separately on each surface. Divide the end surface and create the desired areas of the surface. We specify the boundaries of the surfaces of the parts that have contacts. Adjust the density of the grid to obtain more detailed results of the power calculation. We launch research. We get the results of calculations of power loads. The analysis of the calculations made by the program showed the areas of the model where the greatest internal stresses occur under the influence of external loads. Also shown are areas where the external forces are weak. We resize the model to obtain a structure that will not have areas with a dangerous concentration of internal stresses and provide its strength and rigidity. Thus, modern CAD software is a powerful tool for design engineers, who not only create 3D models of parts and their own, but also create drawings for manufacturing parts and assembling products that will be marketed, but also cut time for experimental research and production testing of the developed equipment. Load simulation tools allow us to identify weaknesses in the construction at the design stage and make the necessary changes without making bulk samples. This, in turn, significantly saves the cost of materials, which in turn affects the cost of products.Item Механічне травмування насіння(ЦНТУ, 2018) Скринник, І. О.; Пісарькова, І. О.; Петренко, М. М.; Скринник, И. А.; Писарькова, И. А.; Петренко, Н. Н.; Skrynnik, I.; Pisarkova, I.; Petrenko, M.Отримані залежності відношення нормальної до поверхні складової швидкості зернівки пшениці після удару по поверхні до швидкості удару (аналог коефіцієнта миттєвого тертя, від якого залежить травмування зерна) і коефіцієнта травмування насіння від швидкості удару поповерхні, кута її нахилу, матеріалу, геометрії, вологості зерна. Ці дані служать для вибору режимів роботи машин для післязбиральної обробки зерна і геометріїповерхонь їх робочих органів. Получены зависимости отношения нормальной к поверхности составляющей скорости зерновки пшеницы после удара по поверхности к скорости удара (аналог коэффициента мгновенного трения, от которого зависит травмирование зерна) и коэффициента травмирования семян от скорости удара по поверхности, угла ее наклона, материала, геометрии, влажности зерна. Эти данные служат для выбора режимов работы машин для послеуборочной обработки зерна и геометрии поверхностей их рабочих органов. The objective of the article is to establish the influence of various factors on the ratio of the normal to the surface of the wheat grain velocity component after impact on the impact velocity (the analogue of the coefficient of instant friction which influences grain damage). Another objective is the study of the dependence of damage in the process of its interaction with the surfaces of working elements of machines on speed impact with the surface, its tilt angle, material, geometry and grain humidity. It has been established that when the angle of impact of grain with the surface increases, then the normal component of velocity after impact is reduced. It determines the rate of the dynamic load on the grain. Therefore, with the increaseof the angle of impact, the proportion of damaged grains decreases. Under impact loads, the destruction (damage) of grains takes place due to stresses (tension) that occur in the place contact of grains and the surface. The tension is directly proportional to the impact force and inversely proportional to the contact area.The contact area depends on the rate of the elastic deformation of the bodies: grain – surface, which increases with the decrease of the elastic modulus of the surface materials and grains. With the increase in the velocity of impact, the restitution factor decreases because part of the energy of grain deformation goes to its local destruction. At the same time, the values of the coefficients of grain damage increase accordingly with increasing velocity (from 1 m/s to 11 m/s). When impacting with the outside surface of the cylinder, the damagecoefficient of the grain decreases with the increase in the angle of impact and the decrease in cylinder diameter. It mainly happens due to reducing the damage of the shell, as this reduces the time of contact of the grain with a convex curvilinear surface after impact. When the grain impactswith the inner cylindrical surface, the degree of grain damage increases due to the increase in the time of the slip of the grain on the surface. It was established that the percentage of grain damage is the smallest in the range of moisture of the grainsat W = 12.7-15.3%, which can be rational in the case of clearing wheat grains by machines. Reducing or increasing this rate leads to the increase in the percentage of grain damage. Therefore, grain damage during the impact can be reduced by choosing rational technological modes of operation, the geometry of surfaces of working elements of grain cleaning machines and their coatings.