Кафедра деталей машин та прикладної механіки
Permanent URI for this community
Browse
Browsing Кафедра деталей машин та прикладної механіки by Subject "auto balancer"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Вид и структура дифференциальных уравнений движения и процесса уравновешивания роторной машины с автобалансирами(ТПУ, 2015) Гончаров, В. В.; Филимонихин, Г. Б.; Гончаров, В. В.; Філімоніхін, Г. Б.; Goncharov, V.; Filimonikhin, G.В рамках упрощенной теории роторных машин с автобалансирами со многими корригирующими грузами устано влена структура и конкретизирован вид систем дифференциальных уравнений, описывающих движение роторной машины ипроцесс уравновешивания ротора автобалансирами. Установлено, что роторная машина условно состоит из нескольких взаимодействующих между собой частей – ротора (ротора в корпусе) и неуравновешенных автобалансиров. Неуравновешенные автобалансиры действуют на ротор с силами, приложенны ми в точках подвеса автобалансиров и равными вторым производным по времени от векторов суммарных дисбалансов. Ротор влияет на движение корригирующих грузов в автобалансире переносными силами инерции, пропорциональными ускорениям точек подвеса автобалансира. Система дифференциальных уравнений, описывающая движение роторной машины, составлена относительно обобщенных ко ординат машины. Эта система состоит из двух и более связанных подсистем. Первая – описывает движение ротора. Ее всегда можно записать относительно обобщенных координат, описывающих движение ротора и изменение суммарных дисбалансов ротора и автобалансира в каждой плоскости коррекции. При этом если ротор уста новлен с возможностью вращения вокруг своей продольной оси в корпус, удерживаемый податливыми опорами, то ротор и кор пус образуют условный составной ротор (более массивный и вытянутый, чем сам ротор) и уравнения составляются для него. Количество остальных подсистем равно числу автобалансиров, уравновешивающих ротор. При этом подсистема, соответствую щая j му автобалансиру, имеет стандартный вид и описывает движение корригирующих грузов в этом автобалансире. Она со стоит из nj дифференциальных уравнений, где nj – количество корригирующих грузов в j м автобалансире. Система дифференциальных уравнений, описывающая процесс автобалансировки роторной машины, составлена относительно обобщенных координат ротора и проекций суммарных дисбалансов ротора и автобалансира в каждой плоскости коррекции. Она предназначена для исследования устойчивости семей основных движений и протекания переходных процессов при наступлении автобалансировки. Эта система также состоит из двух и более связанных подсистем. Первая – получается из подсистемы, описы вающей движение ротора, если ее записать относительно обобщенных координат ротора и суммарных дисбалансов. Количество остальных подсистем также равно числу автобалансиров. Каждая из этих подсистем имеет стандартный вид и состоит из двух ура внений, получающихся путем комбинирования уравнений движения корригирующих грузов соответствующего автобалансира. Сформулированы правила составления дифференциальных уравнений, описывающих движение роторной машины и процесс автобалансировки. Они применимы: при любой кинематике движения ротора или ротора, помещенного в корпусе; любом ко личестве автобалансиров; любом количестве и разных типах корригирующих грузов в автобалансире. Вид дифференциальных уравнений первой подсистемы подтвержден с использованием основных теорем динамики. Сформулированные правила применены для роторной машины, состоящей из ротора, помещенного с возможностью вращения в корпус, удерживаемый податливыми опорами, и двух автобалансиров. In the framework of a simplified theory of rotary machines with auto balancers with many corrective weights the authors ascertained the structure and specified the form of systems of differential equations that describe the movement of a rotary machine and the process of balancing of the rotor by auto balancers. It was determined that the rotary machine conditionally consists of several interacting parts – a rotor (rotor in corps) and unbalanced auto balancers. Unbalanced auto balancers act on the rotor with the forces that apply to the point of suspension of auto balancers and are equal to the second derivative by time of the vectors of the total imbalances. The rotor affects the movement of the corrective weights in auto balancers by forces of moving space that are proportional to the acceleration of points of suspension of auto balancers. The system of differential equations describing the motion of a rotary machine was drawn up with respect to the generalized coordina tes of the machine. It is composed of two or more of the associated subsystems. The first – describes the motion of the rotor. It can always be written relatively to the generalized coordinates that describe the motion of the rotor and total imbalances of the rotor and auto balancer in each correction plane. Thus, if the rotor is mounted with rotation around its longitudinal axis in the corps which is held by pliant supports then the rotor and the corps form a conditioned composite ro tor (more elongated and massive than the rotor) and the equations are made for it. The number of other subsystems equals to the number of auto balancers which counterbalance the rotor. Thus, the subsystem, corres ponding to j th auto balancer, has a standard form and describes the motion of the corrective weights in this auto balancer. It consists of nj differential equations, where nj – the number of corrective weights in j th auto balancer. The system of differential equations that describes the process of auto balancing of the rotary machine is compiled relatively of genera lized coordinates of the rotor and of projections of the total imbalances of the rotor and auto balancer in each correction plane. It is des igned to investigate the stability of families of basic movements and the behavior of transients at auto balancing. This system also con sists of two or more of the associated subsystems. The first is obtained from the subsystem, describing the motion of the rotor if we wri te it relatively to the generalized coordinates of the rotor and total imbalances. The number of other subsystems also equals to the num ber of auto balancers. Each of these subsystems has a standard form and consists of two equations that are obtained by combination of the equations of motion of corrective weights of corresponding auto balancer. Rules of composition of differential equations describing the motion of the rotary machine and the process of auto balancing are for mulated. They are applicable for any kinematics of the rotor motion (the rotor, placed in the corps); for any number of auto balancers; for any number and different types of corrective weights in auto balancer. The type of differential equations of the first subsystem is confirmed using the basic theorems of dynamics. The formulated rules were applied to the rotary machine consisting of the rotor placed in the corps with the possibility to be rotated, which is held by pliant supports, and of two auto balancers.