Π¦Π΅Π½ΡΡΠ°Π»ΡΠ½ΠΎΡΠΊΡΠ°ΡΠ½ΡΡΠΊΠΈΠΉ Π½Π°ΡΠΊΠΎΠ²ΠΈΠΉ Π²ΡΡΠ½ΠΈΠΊ. Π’Π΅Ρ Π½ΡΡΠ½Ρ Π½Π°ΡΠΊΠΈ. ΠΠΈΠΏΡΡΠΊ 5. Π§Π°ΡΡΠΈΠ½Π° 1. - 2022
Permanent URI for this collectionhttps://dspace.kntu.kr.ua/handle/123456789/12335
Browse
Search Results
Item type:Item, ΠΠ°ΠΊΠΎΠ½ΠΎΠΌΡΡΠ½ΠΎΡΡΡ Π²ΠΏΠ»ΠΈΠ²Ρ Π²ΠΈΡΠΎΠΊΠΎΠΌΠΎΠ΄ΡΠ»ΡΠ½ΠΈΡ Π½Π°ΠΏΠΎΠ²Π½ΡΠ²Π°ΡΡΠ² Π½Π° ΡΠΎΠ·ΠΏΠΎΠ΄ΡΠ» ΠΏΠΎΠ»ΡΠ² Π½Π°ΠΏΡΡΠΆΠ΅Π½Ρ Π² ΠΏΠΎΠ²Π΅ΡΡ Π½Π΅Π²ΠΈΡ ΡΠ°ΡΠ°Ρ Π΄Π΅ΡΠ°Π»Π΅ΠΉ ΠΌΠ°ΡΠΈΠ½, Π²ΠΈΠ³ΠΎΡΠΎΠ²Π»Π΅Π½ΠΈΡ Π· ΠΏΠΎΠ»ΡΠΌΠ΅ΡΠ½ΠΈΡ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠ½ΠΈΡ ΠΌΠ°ΡΠ΅ΡΡΠ°Π»ΡΠ²(Π¦ΠΠ’Π£, 2022) ΠΡΠ»ΡΠ½, Π. Π.; ΠΡΠΈΠ½ΡΠΊΡΠ², Π. Π.; ΠΠΈΡΠ΅Π½ΠΊΠΎ, Π‘. Π.; ΠΡΠ²ΡΡΡΠΊΠΈΠΉ, Π. Π.; ΠΠ°Π±ΡΠΉ, Π. Π.; Aulin, V.; Hrinkiv, A.; Lysenko, S.; Livitskyi, O.; Babii, Π.Π Π΄Π°Π½ΡΠΉ ΡΠΎΠ±ΠΎΡΡ Π½Π° ΠΎΡΠ½ΠΎΠ²Ρ ΠΊΠΎΠΌΠΏ'ΡΡΠ΅ΡΠ½ΠΎΠ³ΠΎ ΠΌΠΎΠ΄Π΅Π»ΡΠ²Π°Π½Π½Ρ ΠΊΠΎΠ½ΡΠ°ΠΊΡΠ½ΠΎΡ Π²Π·Π°ΡΠΌΠΎΠ΄ΡΡ ΡΠΏΡΡΠΆΠ΅Π½Ρ Π·ΡΠ°Π·ΠΊΡΠ² (Π΄Π΅ΡΠ°Π»Π΅ΠΉ), Π½Π°Π²Π°Π½ΡΠ°ΠΆΠ΅Π½ΠΈΡ ΡΠ΅ΡΡΡΠΌ, Π²ΠΈΡΠ²Π»Π΅Π½ΠΎ ΠΎΡΠ½ΠΎΠ²Π½Ρ Π·ΠΌΡΠ½ΠΈ ΡΠΎΠ·ΠΏΠΎΠ΄ΡΠ»Ρ ΠΏΠΎΠ»ΡΠ² Π½Π°ΠΏΡΡΠΆΠ΅Π½Ρ Π² ΠΊΠΎΠ½ΡΠ°ΠΊΡΠ½ΠΈΡ ΠΎΠ±Π»Π°ΡΡΡΡ Π³ΠΎΠΌΠΎΠ³Π΅Π½Π½ΠΈΡ Ρ Π³Π΅ΡΠ΅ΡΠΎΠ³Π΅Π½Π½ΠΈΡ (ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠ½ΠΈΡ ) ΠΏΠΎΠ»ΡΠΌΠ΅ΡΠ½ΠΈΡ ΠΌΠ°ΡΠ΅ΡΡΠ°Π»ΡΠ². ΠΠΎΠ»Ρ Π½Π°ΠΏΡΡΠΆΠ΅Π½Π½Ρ Π΄ΠΎΡΠ»ΡΠ΄ΠΆΡΠ²Π°Π»ΠΈ ΡΠΊ Π² ΡΡΠ°ΡΠΈΡΠ½ΠΈΡ , ΡΠ°ΠΊ Ρ Π΄ΠΈΠ½Π°ΠΌΡΡΠ½ΠΈΡ ΡΠΌΠΎΠ²Π°Ρ Π½Π°Π²Π°Π½ΡΠ°ΠΆΠ΅Π½Π½Ρ. Π£Π²Π°Π³Π° Π±ΡΠ»Π° Π·ΠΎΡΠ΅ΡΠ΅Π΄ΠΆΠ΅Π½Π° Π½Π° Π²ΠΈΡΠ²Π»Π΅Π½Π½Ρ ΠΎΠ±Π»Π°ΡΡΠ΅ΠΉ Π· ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΈΠΌ ΡΠ°Π½Π³Π΅Π½ΡΡΠ°Π»ΡΠ½ΠΈΠΌ Π½Π°ΠΏΡΡΠΆΠ΅Π½Π½Ρ , ΡΡ ΠΊΠΎΠ½ΡΡΠ³ΡΡΠ°ΡΡΡ ΡΠ° Π³Π»ΠΈΠ±ΠΈΠ½ΠΈ Π·Π°Π»ΡΠ³Π°Π½Π½Ρ. ΠΡΠΈ ΡΡΠΎΠΌΡ Π±ΡΠ»Π° Π²ΠΈΠΊΠΎΡΠΈΡΡΠ°Π½Π° ΡΠ΅ΠΎΡΡΡ N.P. Suh, ΡΠΊΠ° ΡΡΠΎΡΡΡΡΡΡΡ Π·Π°ΡΠΎΠ΄ΠΆΠ΅Π½Π½Ρ ΡΡΠΉΠ½ΡΡΡΠΈΡ ΠΏΡΠΎΡΠ΅ΡΡΠ² Π² ΠΌΠ°ΡΠ΅ΡΡΠ°Π»Π°Ρ Π·ΡΠ°Π·ΠΊΡΠ² Ρ Π΄Π΅ΡΠ°Π»Π΅ΠΉ, ΡΠ½ΡΡΡΠΉΠΎΠ²Π°Π½Π° Π½Π°ΡΠ²Π½ΡΡΡΡ Π·ΠΎΠ½ Π΄ΡΡ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΈΡ ΡΠ°Π½Π³Π΅Π½ΡΡΠ°Π»ΡΠ½ΠΈΡ Π½Π°ΠΏΡΡΠΆΠ΅Π½Ρ Π½Π° ΠΏΠ΅Π²Π½ΡΠΉ Π³Π»ΠΈΠ±ΠΈΠ½Ρ ΠΏΠΎΠ²Π΅ΡΡ Π½Π΅Π²ΠΎΠ³ΠΎ ΡΠ°ΡΡ. ΠΠ°ΠΏΡΠΎΠΏΠΎΠ½ΠΎΠ²Π°Π½ΠΎ ΠΊΡΠΈΡΠ΅ΡΡΠΉ, ΡΠΎ Π²ΡΠ΄ΠΏΠΎΠ²ΡΠ΄Π°Ρ ΠΎΠΏΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠΌΡ ΠΎΠ±'ΡΠΌΠ½ΠΎΠΌΡ Π²ΠΌΡΡΡΡ Π²ΠΈΡΠΎΠΊΠΎΠΌΠΎΠ΄ΡΠ»ΡΠ½ΠΎΠΌΡ Π½Π°ΠΏΠΎΠ²Π½ΡΠ²Π°ΡΠ°, ΡΠΊΠΈΠΉ Π΄ΠΎΡΡΠ²Π½ΡΡ Π²ΡΠ΄Π½ΠΎΡΠ΅Π½Π½Ρ ΡΡΠ΅ΡΠ΅Π΄Π½Π΅Π½ΠΈΡ Π²ΡΠ΄ΡΡΠ°Π½Ρ ΠΌΡΠΆ ΡΠ΅Π½ΡΡΠ°ΠΌΠΈ ΡΡΡΡΠ΄Π½ΡΡ ΡΠ°ΡΡΠΈΠ½ΠΎΠΊ Π½Π°ΠΏΠΎΠ²Π½ΡΠ²Π°ΡΠ° Ρ ΡΡ ΡΠΎΠ·ΠΌΡΡΡ. ΠΠ°Π²Π΅Π΄Π΅Π½Ρ Π²ΡΠ΄ΠΏΠΎΠ²ΡΠ΄Π½Ρ ΠΎΡΡΠ½ΠΊΠΈ ΡΡΠΎΠ³ΠΎ ΠΊΡΠΈΡΠ΅ΡΡΡ. In this paper, based on computer simulation of contact interaction of conjugations of samples (parts) loaded with friction, the main changes in the distribution of stress fields in the contact regions of homogeneous and heterogeneous (composite) polymeric materials are revealed. Stress fields were investigated under both static and dynamic load conditions. The focus was on identifying areas with maximum tangential stresses , their configuration and depth. The theory of N.P. Suh, which concerns the origin of destructive processes in the materials of samples and parts, is initiated by the presence of zones of maximum tangential stresses at a certain depth of the surface layer. In the homogeneous polymeric material, four stress regions are detected: in the contact region ; the contact area ; in the field of aggregate contacts ; in the area between the aggregate contacts . It is shown that in the relative motion of the conjugations of the samples (parts) the depth of the local areas and , where reaches the highest value and these areas remain in place, and areas and are mixed in operation closer to the surface. The change of configurations of these areas in the process of relative motion of conjugations of samples (details) is also revealed. In the heterogeneous (composite) polymeric material with high-modulus fillers, three local areas were identified: in the filler ; between the fillers ; under the filler . It is determined that the contact load in the polymer composite material is transmitted through high-modulus fillers and is determined by their geometry and relative position. Significant danger is posed by cases when areas and are located at the same level from the surface of the sample (part), which can cause chipping of the filler. It is shown that the most effective is the operation of the part when the area is located deeper than . A criterion corresponding to the optimal volume content of high modulus filler, which is equal to the ratio of the average distance between centers of adjacent filler particles and their size. Relevant estimates of this criterion are given.