Π¦Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½ΠΎΡƒΠΊΡ€Π°Ρ—Π½ΡΡŒΠΊΠΈΠΉ Π½Π°ΡƒΠΊΠΎΠ²ΠΈΠΉ вісник. Π’Π΅Ρ…Π½Ρ–Ρ‡Π½Ρ– Π½Π°ΡƒΠΊΠΈ. Випуск 5. Частина 1. - 2022

Permanent URI for this collectionhttps://dspace.kntu.kr.ua/handle/123456789/12335

Browse

Search Results

Now showing 1 - 1 of 1
  • Item type:Item,
    Закономірності Π²ΠΏΠ»ΠΈΠ²Ρƒ Π²ΠΈΡΠΎΠΊΠΎΠΌΠΎΠ΄ΡƒΠ»ΡŒΠ½ΠΈΡ… Π½Π°ΠΏΠΎΠ²Π½ΡŽΠ²Π°Ρ‡Ρ–Π² Π½Π° Ρ€ΠΎΠ·ΠΏΠΎΠ΄Ρ–Π» ΠΏΠΎΠ»Ρ–Π² Π½Π°ΠΏΡ€ΡƒΠΆΠ΅Π½ΡŒ Π² ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Π΅Π²ΠΈΡ… ΡˆΠ°Ρ€Π°Ρ… Π΄Π΅Ρ‚Π°Π»Π΅ΠΉ машин, Π²ΠΈΠ³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½ΠΈΡ… Π· ΠΏΠΎΠ»Ρ–ΠΌΠ΅Ρ€Π½ΠΈΡ… ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π½ΠΈΡ… ΠΌΠ°Ρ‚Π΅Ρ€Ρ–Π°Π»Ρ–Π²
    (ЦНВУ, 2022) Аулін, Π’. Π’.; Π“Ρ€ΠΈΠ½ΡŒΠΊΡ–Π², А. Π’.; ЛисСнко, Π‘. Π’.; Π›Ρ–Π²Ρ–Ρ†ΡŒΠΊΠΈΠΉ, О. М.; Π‘Π°Π±Ρ–ΠΉ, А. Π’.; Aulin, V.; Hrinkiv, A.; Lysenko, S.; Livitskyi, O.; Babii, А.
    Π’ Π΄Π°Π½Ρ–ΠΉ Ρ€ΠΎΠ±ΠΎΡ‚Ρ– Π½Π° основі ΠΊΠΎΠΌΠΏ'ΡŽΡ‚Π΅Ρ€Π½ΠΎΠ³ΠΎ модСлювання ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π½ΠΎΡ— Π²Π·Π°Ρ”ΠΌΠΎΠ΄Ρ–Ρ— ΡΠΏΡ€ΡΠΆΠ΅Π½ΡŒ Π·Ρ€Π°Π·ΠΊΡ–Π² (Π΄Π΅Ρ‚Π°Π»Π΅ΠΉ), Π½Π°Π²Π°Π½Ρ‚Π°ΠΆΠ΅Π½ΠΈΡ… тСртям, виявлСно основні Π·ΠΌΡ–Π½ΠΈ Ρ€ΠΎΠ·ΠΏΠΎΠ΄Ρ–Π»Ρƒ ΠΏΠΎΠ»Ρ–Π² Π½Π°ΠΏΡ€ΡƒΠΆΠ΅Π½ΡŒ Π² ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π½ΠΈΡ… областях Π³ΠΎΠΌΠΎΠ³Π΅Π½Π½ΠΈΡ… Ρ– Π³Π΅Ρ‚Π΅Ρ€ΠΎΠ³Π΅Π½Π½ΠΈΡ… (ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π½ΠΈΡ…) ΠΏΠΎΠ»Ρ–ΠΌΠ΅Ρ€Π½ΠΈΡ… ΠΌΠ°Ρ‚Π΅Ρ€Ρ–Π°Π»Ρ–Π². Поля напруТСння дослідТували як Π² статичних, Ρ‚Π°ΠΊ Ρ– Π΄ΠΈΠ½Π°ΠΌΡ–Ρ‡Π½ΠΈΡ… ΡƒΠΌΠΎΠ²Π°Ρ… навантаТСння. Π£Π²Π°Π³Π° Π±ΡƒΠ»Π° зосСрСдТСна Π½Π° виявлСння областСй Π· максимальним Ρ‚Π°Π½Π³Π΅Π½Ρ†Ρ–Π°Π»ΡŒΠ½ΠΈΠΌ напруТСння , Ρ—Ρ… ΠΊΠΎΠ½Ρ„Ρ–Π³ΡƒΡ€Π°Ρ†Ρ–Ρ— Ρ‚Π° Π³Π»ΠΈΠ±ΠΈΠ½ΠΈ залягання. ΠŸΡ€ΠΈ Ρ†ΡŒΠΎΠΌΡƒ Π±ΡƒΠ»Π° використана тСорія N.P. Suh, яка ΡΡ‚ΠΎΡΡƒΡ”Ρ‚ΡŒΡΡ зародТСння Ρ€ΡƒΠΉΠ½ΡƒΡŽΡ‡ΠΈΡ… процСсів Π² ΠΌΠ°Ρ‚Π΅Ρ€Ρ–Π°Π»Π°Ρ… Π·Ρ€Π°Π·ΠΊΡ–Π² Ρ– Π΄Π΅Ρ‚Π°Π»Π΅ΠΉ, Ρ–Π½Ρ–Ρ†Ρ–ΠΉΠΎΠ²Π°Π½Π° Π½Π°ΡΠ²Π½Ρ–ΡΡ‚ΡŽ Π·ΠΎΠ½ Π΄Ρ–Ρ— ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡŒΠ½ΠΈΡ… Ρ‚Π°Π½Π³Π΅Π½Ρ†Ρ–Π°Π»ΡŒΠ½ΠΈΡ… Π½Π°ΠΏΡ€ΡƒΠΆΠ΅Π½ΡŒ Π½Π° ΠΏΠ΅Π²Π½Ρ–ΠΉ Π³Π»ΠΈΠ±ΠΈΠ½Ρ– ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Π΅Π²ΠΎΠ³ΠΎ ΡˆΠ°Ρ€Ρƒ. Π—Π°ΠΏΡ€ΠΎΠΏΠΎΠ½ΠΎΠ²Π°Π½ΠΎ ΠΊΡ€ΠΈΡ‚Π΅Ρ€Ρ–ΠΉ, Ρ‰ΠΎ Π²Ρ–Π΄ΠΏΠΎΠ²Ρ–Π΄Π°Ρ” ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΠΌΡƒ ΠΎΠ±'Ρ”ΠΌΠ½ΠΎΠΌΡƒ вмісту Π²ΠΈΡΠΎΠΊΠΎΠΌΠΎΠ΄ΡƒΠ»ΡŒΠ½ΠΎΠΌΡƒ Π½Π°ΠΏΠΎΠ²Π½ΡŽΠ²Π°Ρ‡Π°, який Π΄ΠΎΡ€Ρ–Π²Π½ΡŽΡ” Π²Ρ–Π΄Π½ΠΎΡˆΠ΅Π½Π½ΡŽ усСрСднСних Π²Ρ–Π΄ΡΡ‚Π°Π½ΡŒ ΠΌΡ–ΠΆ Ρ†Π΅Π½Ρ‚Ρ€Π°ΠΌΠΈ сусідніх частинок Π½Π°ΠΏΠΎΠ²Π½ΡŽΠ²Π°Ρ‡Π° Ρ– Ρ—Ρ… Ρ€ΠΎΠ·ΠΌΡ–Ρ€Ρƒ. НавСдСні Π²Ρ–Π΄ΠΏΠΎΠ²Ρ–Π΄Π½Ρ– ΠΎΡ†Ρ–Π½ΠΊΠΈ Ρ†ΡŒΠΎΠ³ΠΎ ΠΊΡ€ΠΈΡ‚Π΅Ρ€Ρ–ΡŽ. In this paper, based on computer simulation of contact interaction of conjugations of samples (parts) loaded with friction, the main changes in the distribution of stress fields in the contact regions of homogeneous and heterogeneous (composite) polymeric materials are revealed. Stress fields were investigated under both static and dynamic load conditions. The focus was on identifying areas with maximum tangential stresses , their configuration and depth. The theory of N.P. Suh, which concerns the origin of destructive processes in the materials of samples and parts, is initiated by the presence of zones of maximum tangential stresses at a certain depth of the surface layer. In the homogeneous polymeric material, four stress regions are detected: in the contact region ; the contact area ; in the field of aggregate contacts ; in the area between the aggregate contacts . It is shown that in the relative motion of the conjugations of the samples (parts) the depth of the local areas and , where reaches the highest value and these areas remain in place, and areas and are mixed in operation closer to the surface. The change of configurations of these areas in the process of relative motion of conjugations of samples (details) is also revealed. In the heterogeneous (composite) polymeric material with high-modulus fillers, three local areas were identified: in the filler ; between the fillers ; under the filler . It is determined that the contact load in the polymer composite material is transmitted through high-modulus fillers and is determined by their geometry and relative position. Significant danger is posed by cases when areas and are located at the same level from the surface of the sample (part), which can cause chipping of the filler. It is shown that the most effective is the operation of the part when the area is located deeper than . A criterion corresponding to the optimal volume content of high modulus filler, which is equal to the ratio of the average distance between centers of adjacent filler particles and their size. Relevant estimates of this criterion are given.