Кафедра деталей машин та прикладної механіки

Permanent URI for this communityhttps://dspace.kntu.kr.ua/handle/123456789/787

Browse

Search Results

Now showing 1 - 10 of 12
  • Item
    Patterns in change and balancing of aerodynamic imbalance of the low-pressure axial fan impeller
    (2018) Olijnichenko, L.; Filimonikhin, G.; Nevdakha, A.; Pirogov, V.; Олійніченко, Л. С.; Філімоніхін, Г. Б.; Невдаха, А. Ю.; Пирогов, В. В.
    Дослiдженi особливостi змiни i балансування аеродинамiчної незрiвноваженостi робочого колеса осьового вентилятора типу ВО-06-300 (Україна). Знайдена аеродинамiчна неврiвноваженiсть робочого колеса, викликана установкою однiєї лопатки: – пiд iншим кутом атаки; – з порушенням рiвномiрностi кроку; – не перпендикулярно до подовжньої осi робочого колеса; – за наявнiстю вiдразу всiх трьох вище названих похибок встановлення. Оцiнена змiна аеродинамiчної незрiвноваженостi вiд змiни густини повiтря. Оцiнений вплив температури повiтря, висоти над рiвнем моря, атмосферного тиску на густину повiтря i аеродинамiчну незрiвноваженiсть. Встановлено, що при iншому кутi атаки i при порушеннi перпендикулярностi виникає динамiчна незрiвноваженiсть, у який моментна складова на порядок бiльша за статичну складову. При порушеннi рiвномiрностi кроку виникає тiльки статична складова, що лежить у площинi робочого колеса. Серед розглянутих похибок найбiльш небажаною є встановлення лопатки пiд iншим кутом атаки. При такiй похибцi аеродинамiчна незрiвноваженiсть у 6–8 разiв бiльша, нiж при iнших. При змiнi в робочому колесi кута атаки однiєї лопатки на ±4o можна погiршити точнiсть балансування робочого колеса до класу точностi G 6,3 при частотi 1500 об/хв, чи G 16 – при 3000 об/хв. Встановлено, що звичайну i аеродинамiчну незрiвноваженостi можна балансувати одночасно. Балансування доцiльно проводити динамiчне в двох площинах корекцiї. Балансування можна проводити корегуванням мас чи пасивними автобалансирами. На конкретному прикладi показана методика врахування аеродинамiчної неврiвноваженостi в диференцiальних рiвняннях руху осьового вентилятора. Вiдповiдно до методики складовi аеродинамiчної незрiвноваженостi додаються до вiдповiдних складових звичайної незрiвноваженостi. Одержанi результати застосовнi на етапах проектування i виготовлення осьових вентиляторiв низького тиску. Їх застосування дозволить полiпшити вiбрацiйнi характеристики зазначених вентиляторiв.
  • Item
    Theory of mechanisms and machines. Introduction
    (ЦНТУ, 2024) Pirogov, V.; Olijnichenko, L.; Пирогов, В. В.; Олійніченко, Л. С.
    Mechanical engineering - the main branch of a modern industrially developed country - determines the level of development of the productive forces of society, is the foundation of technical progress in all branches of the national economy. In turn, the progress of mechanical engineering is determined by the perfection of the machines that are created. Therefore, deep theoretical knowledge and experience are required from the engineer, the ability not only to manage complex equipment, to use it successfully, but also to ensure its rapid progress. A modern engineer must perfectly master the methods of calculating and designing new high-speed, automated and high-performance machines. The creation of new machines is based on the achievements of many fundamental and applied sciences, among which the theory of mechanisms and machines occupies an important place. TMM is one of the main general engineering disciplines that provides the necessary theoretical training for mechanical engineers. Knowledge of TMM is necessary not only for design engineers who design machines, but also for engineers engaged in their production and operation. The basis of TMM is courses in physics, higher and applied mathematics, theoretical mechanics, engineering graphics, computing and programming. The task of the TMM course is to prepare students for listening to courses on machine detailing, mechanical engineering technology, automated design systems, the basics of scientific research, and courses on the calculation and design of various special machines. The study guide can be used both in the educational process and in engineering practice.
  • Item
    Опір матеріалів. Частина І
    (ЦНТУ, 2024) Філімоніхін, Г. Б.; Пирогов, В. В.; Олійніченко, Л. С.; Filimonikhin, G.; Pirogov, V.; Olijnichenko, L.
    Навчальний посібник призначено для закріплення теоретичного матеріалу та полегшення самостійної роботи студентів під час виконання індивідуальних завдань з дисципліни “Опір матеріалів”. Також його можна використовувати і для розв’язання задач, які виникають перед інженером на практиці при проектуванні або удосконаленні різноманітних будівельних конструкцій та машин.
  • Item
    Деталі машин. Курсове проектування. Частина 1
    (Лисенко В.Ф., 2018) Невдаха, Ю. А.; Пирогов, В. В.; Невдаха, А. Ю.; Пукалов, В. В.; Nevdakha, Y.; Pirogov, V.; Nevdakha, A.; Pukalov, V.
    Викладені методи розрахунку механічних приводів та передач (пасових, ланцюгових, зубчастих, черв’ячних). Приведено основні теоретичні відомості та рекомендації необхідні для прийняття студентом виважених конструкторських рішень. Розглянуті приклади проектування механічних приводів та передач. Для студентів механічних і машинобудівних спеціальностей втузів. Може бути корисний для аспірантів, наукових працівників та інженерів-конструкторів.
  • Item
    Стабілізація положення осі обертання абсолютно твердого тіла маятниковим (кульовим) автобалансиром
    (Київ, 2004) Горошко, О. О.; Філімоніхін, Г. Б.; Пирогов, В. В.; Goroshko, О.; Filimonikhin, H.; Pirogov, V.
    Розглянута задача про стійкість руху ізольованої матеріальної системи, яку утворюють абсолютно тверде тіло, що рухається плоскопаралельно, на центральну вісь якого, перпендикулярну площині руху, насаджені два однакових математичних маятника і усередині якого знаходиться матеріальна точка, що створює дисбаланс. Встановлено, що, за умови існування, глобально стійкий основний рух системи, у якому система обертається навколо центральної осі тіла, а решта рухів, побічних - нестійка. Is considered the problem of stabilization, of the position of the axis of the isolated absolute rigid body concerning itself. The isolated absolute rigid body makes plane-parallel motions. On the central axis of the absolute rigid body, which is perpendicular to the plane of motion is installed two identical mathematical pendulums. Inside the absolute rigid body there is a material point, which creates unbalanced weight. Is established, that, under condition of existence, is global stable the main motion of a system – the motion, in which the system rotates around the central axis of the absolute rigid body.
  • Item
    Усунення кута нутації та незрівноваженості обертових ізольованих систем маятниками (кулями)
    (2010) Пирогов, В. В.; Pirogov, V.; Філімоніхін, Г. Б.; Filimonikhin, G.
    Досліджується задача усунення кута нутації та незрівноваженості обертових ізольованих систем маятниками (кулями). The problem eliminating nutation angle and unstability rotating isolated systems pendulum (balls).
  • Item
    Стабілізація положення осі обертання тіла-носія маятниками (кулями)
    (2008) Пирогов, В. В.; Філімоніхін, Г. Б.; Pirogov, V.; Filimonikhin, G.
    Досліджується задача стабілізації положення осі обертання тіла-носія маятниками (кулями) енергетичним методом та першим методом Ляпунова. The problem stabilization the rotation axis of the body carrier pendulums (balls) energy method and the first method of Lyapunov.
  • Item
    Устойчивость установившихся движений спутника, стабилизируемого вращением, с пассивным автобалансиром-демпфером угла нутации
    (2012) Филимонихин, Г. Б.; Филимонихина, И. И.; Пирогов, В. В.; Філімоніхін, Г. Б.; Філімоніхіна, І. І.; Пирогов, В. В.; Filimonikhin, G.; Filimonikhina, I.; Pirogov, V.
    Решается актуальная проблема выделения установившихся движений и определения условий их условной асимптотической устойчивости для изолированной системы, состоящей из вращающегося несущего тела и присоединенных к нему маятников, относительному движению которых препятствуют силы вязкого сопротивления. Такими системами моделируются в ряде задач космические аппараты, положение которых в пространстве стабилизируется вращением. Основное внимание уделяется исследованию величины и динамики изменения угла нутации несущего тела. Вирішується актуальна проблема виділення усталених рухів і визначення умов їх умовної асимптотичної стійкості для ізольованої системи, що складається з обертового несучого тіла і приєднаних до нього маятників, відносному руху яких перешкоджають сили в'язкого опору. Такими системами моделюються в ряді задач космічні апарати, положення яких у просторі стабілізується обертанням. Основна увага приділяється дослідженню величини і динаміки зміни кута нутації несучого тіла. We solve the actual problem of allocation of steady motions and determine the conditions of their conditional asymptotic stability for isolated system consisting of a rotating carrier body and pendulums attached to it, which relative motion prevents the forces of viscous resistance. Such systems are modeled in a number of tasks the spacecraft, whose position in space is stabilized by rotation. The main attention is paid to research of magnitude and dynamics of change of the angle of nutation of the carrier body.
  • Item
    Стабилизация маятниковыми демпферами пространственного положения оси вращения несущего тела
    (2007) Филимонихин, Г. Б.; Пирогов, В. В.; Филимонихина, И. И.; Філімоніхін, Г. Б.; Пирогов, В. В.; Філімоніхіна, І. І.; Filimonikhin, G.; Pirogov, V.; Filimonikhina, I.
    Рассмотрена задача пространственной стабилизации положения оси вращения несимметричного тела-носителя маятниковыми демпферами. Найдены установившиеся движения системы, в которых ее кинетическая энергия принимает стационарные значения, а также установлен характер их устойчивости. Розглянуто задачу просторової стабілізації положення осі обертання несиметричного тіла-носія маятниковими демпферами. Знайдені усталені рухи системи, в яких її кінетична енергія приймає стаціонарні значення, а також встановлений характер їх стійкості. The problem of spatial stabilization for the position, of rotation axis of asymmetric carrying body by the pendulum dampers is considered. The steady-state motions of the system are found, where the system kinetic energy has the stationary values as well as the character of the motion stability is established.
  • Item
    Стабилизация положения оси вращения твердого тела связанными абсолютно твердыми телами
    (Институт механики им. С.П. Тимошенко НАН Украины, 2005) Филимонихин, Г. Б.; Пирогов, В. В.; Філімоніхін, Г. Б.; Пирогов, В. В.; Filimonikhin, G.; Pirogov, V.
    Рассмотрена задача стабилизации положения оси вращения тела связанными абсолютно твердыми телами. Принято, что тело движется плоскопараллельно. Положение оси его вращения стабилизируют связанные абсолютно твердые тела, которые могут вращаться вместе вокруг центральной оси тела и в противоположных направлениях на равные углы вокруг поперечных осей тела. Внутри тела находится неподвижная материальная точка, которая создает неуравновешенность. Установлено, что при условии существования, устойчивы основные движения системы – движения, в которых она вращается вокруг центральной оси тела, а остальные движения (побочные) – неустойчивы. Розглянуто задачу стабілізації положення осі обертання тіла зв'язаними абсолютно твердими тілами. Прийнято, що тіло рухається плоскопаралельно. Положення його осі обертання стабілізують зв’язані АТТ, які можуть обертатися разом навколо центральної осі тіла і у протилежних напрямках на рівні кути навколо поперечних осей тіла. Усередині тіла знаходиться нерухома матеріальна точка, що створює незрівноваженість. Встановлено, що за умови існування, стійкі основні рухи системи – рухи, у яких вона обертається навколо центральної осі тіла, а решта рухів (побічних) – нестійка. The problem of stabilization of the position of a body axis by constrained rigid bodies is considered. It is assumed that the body moves plane-parallel. The position of axis of its rotation is stabilized by the constrained rigid bodies which are able to rotate together around the body centroidal axis and in opposite directions on equal angles around the body transverse axes. Inside the body, the material point exists which creates the disbalance. It is established that the main motions of the system - the motions in which the system is rotated around the cetroidal axis – are stable (if they exist), whereas, the rest motions -the unwanted motions – are instable.