Центральноукраїнський науковий вісник. Технічні науки.

Permanent URI for this communityhttps://dspace.kntu.kr.ua/handle/123456789/9042

Ідентифікатор медіа: R30-03350 (рішення Національної ради України від 25.04.2024 р. № 1418). ISSN 2664-262X (p) DOI: 10.32515/2664-262X

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Дослідження впливу температури електроліту при імпульсному анодуванні на властивості поверхневих шарів технічного алюмінію
    (ЦНТУ, 2023) Гвоздецький, В. М.; Маркович, С. І.; Задорожна, Х. Р.; Студент, М. М.; Hvozdetskii, V.; Markovych, S.; Zadorozhna, К.; Student, М.
    Імпульсне анодування формує оксидні шари на алюмінієвих сплавах, що дозволяє отримати поверхневі шари з високою твердістю (до 2000 HV), низьким коефіцієнтом тертя, високою адгезією до металевої основи та низькою екологічною небезпекою. Проведено дослідження впливу температури імпульсного анодування на структуру та зносостійкість анодованих шарів. Встановлено, шо більше молекул води та сірки в анодованому шарі, то менша його мікротвердість та абразивна зносостійкість. Мінімальний знос анодованого шару, а значить найвищу його зносостійкість, зафіксовано для шарів, синтезованих за температури анодування -8ºС, а максимальний знос та найменшу зносостійкість за температури анодування -5ºС. Висока зносостійкість анодованих шарів, синтезованих за температур електроліту від -8 до +10ºС за умов тертя без мащення зумовлена наявністю кристалічної води в анодованому шарі. luminum alloys are characterized by low abrasive wear resistance, which significantly restricts their wide use in technological environments, especially if they contain abrasive particles. The method of pulse anodizing, which consists in periodically changing the current density, allows to improve the hardness and abrasive wear resistance. However, the influence of temperature on these processes has not been sufficiently studied.
  • Item
    Підвищення абразивної зносостійкості алюмінієвих ливарних сплавів Al-Si АК-9 та АК-12 плазмо-електролітною обробкою
    (ЦНТУ, 2022) Студент, М. М.; Погрелюк, І. М.; Маркович, С. І.; Гвоздецький, В. М.; Задорожна, Х. Р.; Топчій, В. І.; Student, M.; Pogrelyuk, I.; Markovych, S.; Hvozdetskii, V.; Zadopozna, K.; Topchiy, V.
    Досліджено структуру, мікротвердість та абразивну зносостійкість алюмінієвих ливарних сплавів Al-Si АК-9 та АК-12 силумінів. Фазовий аналіз показав, що оксидний ПЕО шар складається із двох оксидних фаз αAl2O3, γAl2O3 та силікатної фази Al2SiO3. Кремній є присутній у структурі оксидного шару проте його є менше ніж у структурі силумінів. Встановлено, що в процесі плазмо-електролітної обробки кремній розчиняється у лужному електроліті. Показано, що плазмоелектролітна обробка силумінів АК-9 та АК-12 підвищує їх мікротвердість до 1000 …1300 HV, це спричиняє підвищення їх абразивної зносостійкості у 14...57 разів. Додаток в електроліт перекису водню H2O2 у кількості 3% мас. підвищує абразивну зносостійкість силумінів після плазмоелектролітної обробки ще на 30...70%. Це зумовлено збільшенням оксидних фаз та зменшенням силікатної фази Al2SiO3 у структурі покриття. Aluminum casting alloys are used in machine-building, automobile, aviation, electrical and textile enterprises. However, aluminum alloys have low abrasive wear resistance, which significantly hinders their use in technological environments where abrasive particles are present. However, aluminum alloys have low abrasive wear resistance, which significantly hinders their use in technological environments where abrasive particles are present. The method of plasma electrolytic oxidation of plasma electrolyte treatment on aluminum alloys provides high hardness up to 2000 HV, low friction coefficient, high adhesion to the metal base, high environmental friendliness. However, this method does not allow the synthesis of oxide layers with high abrasive wear resistance on cast alloys - silumin. Plasma electrolyte treatment layers synthesized on the most widely used Al-Si foundry alloys have significant disadvantages: low rate of synthesis of the oxoceramic layer - 0.5 - 1 μm / min., Low thickness - up to 140 μm, low microhardness (700- 1000 HV) and low abrasion resistance. Plasma electrolyte treatment layers were synthesized on the surface of 30x30 mm plates with a thickness of 4 mm from aluminum casting alloys AK-9 (9% Si) and AK-12 (12% Si) in electrolyte - 3 g / l KOH + 2 g / l Na2SiO3 (aqueous solution of liquid glass) without and with the addition to the electrolyte of 3 g / l of hydrogen peroxide H2O2, pulsed current at a frequency of 50 Hz in the cathode-anode mode at a ratio of currents (Ik / Ia) = 1 and a current density of 20 A / dm2. The thickness of the coatings after synthesis for 120 min was 120 -130 μm .. [4]. Metallographic studies were performed on a scanning electron microscope ZEISS EVO 40XVP with X-ray microanalysis system INCA Energy. The phase composition of the surface layers was investigated using a DRON-3M diffractometer in Cu-K radiation. Conclusions: 1. Plasma-electrolyte treatment of silumins AK-9 and AK-12 increases their microhardness up to 1000… 1300 HV, which causes an increase in their abrasive wear resistance by 14 ... 57 times. 2. Addition to the electrolyte of hydrogen peroxide H2O2 in the amount of 3% of the mass. increases the abrasive wear resistance of silumins after plasma electrolyte treatment by another 30 ... 70%. This is due to the increase in the content of oxide phases αAl2O3, γAl2O3 and the decrease in the content of the silicate phase of sillimanite - Al2O3 · SiO2 in the coating structure.