Центральноукраїнський науковий вісник. Технічні науки.
Permanent URI for this communityhttps://dspace.kntu.kr.ua/handle/123456789/9042
Ідентифікатор медіа: R30-03350 (рішення Національної ради України від 25.04.2024 р. № 1418).
ISSN 2664-262X (p)
DOI: 10.32515/2664-262X
Browse
4 results
Search Results
Item Теплостійкість іонноазотованих алюмінієвих сплавів при ізотермічному та термоциклічному впливі(ЦНТУ, 2020) Рутковський, А. В.; Маркович, С. І.; Михайлюта, С. С.; Rutkovskіy, A.; Markovych, S.; Myhajlyta, S.; Рутковский, А. В.; Маркович, С. И.В роботі проведено дослідження основного параметру, що обмежує застосування поршнів з алюмінієвих сплавів при форсуванні двигунів - теплостійкості та її залежності від дифузійних іонноазотованих шарів. При аналізі останніх досліджень і публікацій визначено найбільш поширені методи нагрівання зразків при випробуваннях, їх переваги та недоліки. Завдання дослідження - виявити взаємозв'язок факторів, що визначають теплостійкість іонноазотованих алюмінієвих сплавів при ізотермічному та термоциклічному впливі для ефективного аналізу механізму явищ та управління технологічним процесом зміцнення поршнів. Для дослідження використовувався комплекс лабораторного устаткування на основі установки “Щелкунчик”, що забезпечує циклічну зміну температури й навантаження зразка, контроль та запис значень температури, навантаження й деформації та функціонування в автоматичному режимі. При цьому використовувалися плоскі зразки з алюмінієвого сплаву АЛ2І з теплозахисними дифузійними іонноазотованими шарами, що нанесені в установці ВІПА-1 та зразки без обробки. Характеристики термічного циклу: 500 °С ↔ 720 °С. час нагрівання - 10 сек., охолодження 15 сек., що відповідає реальним умовам експлуатації поршнів. Визначені криві ізотермічної та термоциклічної повзучості що мають чітко виражені три ділянки повзучості, в залежності від температури тривалість їх різна. Це зумовлено наявністю в поверхневому шарі зміцнюючої фази АlNi; рівномірністю розподілу компонентів покриття по поверхні й ступінню їх тугоплавкості. З цим пов’язано ускладнення руху дислокацій, які на своєму шляху зіштовхуються з необхідністю долати при своєму русі великі перепони, що викликані наявністю зміцненого шару. Вид кривих повзучості залежить від температури та умов її впливу на композицію “основа-покриття”. Час до руйнування при термоциклічному режимі випробувань менший, ніж при ізотермічному. В процесі повзучості алюмінієвого сплаву АЛ21 із теплозахисними дифузійними іонноазотованими шарами спостерігається два конкуруючих процеси: зміцнення в наслідок пластичної деформації та зняття зміцнення під впливом підвищеної температури. Опір ізотермічній та термоциклічній повзучості зміцненого алюмінієвого сплаву АЛ21 підвищився в 1,8...2,2 рази. Тhe study of the main parameter that limits the use of pistons made of aluminum alloys in boosting engines - heat resistance and its dependence on diffusion ion-nitrided layers. In the analysis of recent studies and publications, the most common methods of heating samples during tests, their advantages and disadvantages are identified. The task of the study is to identify the relationship of factors that determine the heat resistance of ionnitrided aluminum alloys under isothermal and thermocyclic effects for effective analysis of the mechanism of phenomena and control of the technological process of strengthening the pistons. The availability of this information will increase the strength and reliability of both the coatings themselves and the parts with coatings at the stage of their design. A set of laboratory equipment based on the Nutcracker installation was used for the study, which provides cyclic change of temperature and load of the sample, control and recording of temperature values, loading and deformation and operation in automatic mode. Flat samples of aluminum alloy AL2I with heatprotective diffusion ion-nitrided layers applied in the VIPA-1 installation and samples without treatment were used. Characteristics of the thermal cycle: 500 ° C ↔ 720 °C. heating time - 10 sec., cooling 15 sec., which corresponds to the real operating conditions of the pistons. The fixed value of the load was 0.8σВ according to DSTU 2637-94 and the criteria for determining the allowable stress in the Standards of ASME (80% of the average value of stresses that lead to a total deformation of 1%). The curves of isothermal and thermocyclic creep having three clearly expressed sites of creep are defined, depending on temperature their duration is different. Isothermal and thermocyclic creep curves of aluminum alloy AL21 with heat-protective diffusion ionnitrided layers have three distinct creep areas, depending on the temperature their duration is different. This is due to the presence in the surface layer of the reinforcing phase AlNi; uniformity of distribution of components of a covering on a surface and degree of their refractoryness. This is due to the complexity of the movement of dislocations, which on their way face the need to overcome large obstacles in their movement, caused by the presence of a reinforced layer. Conclusions. Based on the obtained curves of isothermal and thermo cyclic creep, it is established that the type of creep curves depends on the temperature and conditions of its influence on the composition "basecoating"; the time to failure in the thermo cyclic test mode is less than in the isothermal; in the process of creep of aluminum alloy AL21 with heat-protective diffusion ion-nitrided layers, two competing processes are observed: hardening due to plastic deformation and removal of hardening under the influence of elevated temperature; despite the different composition of heat-protective diffusion ion-nitrided layers, the resistance to isothermal and thermo cyclic creep of the reinforced aluminum alloy AL21 increased by 1.8 ... 2.2 times. В работе проведено исследование основного параметра, что ограничивает применение поршней из алюминиевых сплавов при форсировании двигателей - теплостойкости и ее зависимости от диффузионных ионноазотированых слоев. При анализе последних исследований и публикаций определены наиболее распространенные методы нагревания образцов при испытаниях, их преимущества и недостатки. Задание исследования - обнаружить взаимосвязь факторов, которые определяют теплостойкость ионноазотированых алюминиевых сплавов при изотермическом и термоциклическом влиянии для эффективного анализа механизма явлений и управления технологическим процессом укрепления поршней. Для исследования использовался комплекс лабораторного оборудования на основе установки “Щелкунчик”, которая обеспечивает циклическое изменение температуры и нагрузку образца, контроль и запись значений температуры, нагрузки и деформации и функционирования в автоматическом режиме. При этом использовались плоские образцы из алюминиевого сплава АЛ21 с теплозащитными диффузионными ионноазотоваными слоями, которые нанесены в установке ВИПА-1 и образцы без обработки. Характеристики термического цикла: 500 °С - 720°С. время нагревания - 10 сек., охлаждение 15 сек., которое отвечает реальным условиям эксплуатации поршней. Определены кривые изотермической и термоциклической ползучести что имеют четко выраженные три участка ползучести, в зависимости от температуры длительность их разная. Это предопределено наличием в поверхностном слое укрепляющей фазы АlNi; равномерностью распределения компонентов покрытия по поверхности и степенью их тугоплавкости. С этим связано осложнение движения дислокаций, которые на своем пути сталкиваются с необходимостью преодолевать при своем движении большие преграды, которые вызваны наличием укрепленного слоя. Вид кривых ползучести зависит от температуры и условий ее влияния на композицию “основа-покрытие”. Время до разрушения при термоциклическом режиме испытаний меньше, чем при изотермическом. В процессе ползучести алюминиевого сплава АЛ21 с теплозащитными диффузионными ионноазотированными слоями наблюдается два конкурирующих процесса: укрепление вследствии пластической деформации и снятие укрепления под воздействием повышенной температуры. Сопротивление изотермической и термоциклической ползучести укрепленного алюминиевого сплава АЛ21 повысился в 1,8...2,2 раза.Item Вплив діаметра електродних порошкових дротів на механічні характеристики електродугових покриттів(ЦНТУ, 2020) Студент, М. М.; Головчук, М. Я.; Чумало, Г. В.; Гвоздецький, В. М.; Маркович, С. І.; Похмурська, Г. В.; Student, M.; Golovchuk, M.; Chumalo, H.; Hvozdetskii, V.; Markovych, S.; Pohkmurska, H.; Гвоздецкий, В. М.; Маркович, С. И.; Похмурская, Г. В.В роботі проведено впливу діаметра електродних порошкових дротів на механічні характеристики електродугових покриттів. Покриття отримували на оригінальному обладнанні, застосовуючи для напилювання модельні порошкові дроти базових систем легування Fe–Cr–C та Fe–Cr–B діаметром 1,6 та 2,4 мм. Досліджено вплив діаметра порошкових дротів на структуру, електродугових покриттів різного діаметра. Встановлено залежність поруватості, мікротвердості, адгезії до сталевої основи, абразивної зносостійкості електродугових покриттів, напилених з порошкових дротів з різною кількістю шихти, від товщини ламелей у структурі покриттів. Визначено вплив товщини ламелей у структурі покриттів, напилених з порошкових дротів з різною кількістю шихти (залежно від їх діаметра 1,6 та 2,4 мм), на їх абразивну зносостійкість. Встановлено, що товщина ламелей у покриттях усіх проаналізованих систем легування зростала зі збільшенням об'єму розплавленого металу. Показано, що кількість оксидної фази у структурі покриттів зростає вдвічі зі збільшенням дистанції розпилювання порошкових дротів від 80 до 120 мм. Більше оксидної фази (на 40…100%) виявили у покриттях, сформованих із ПД діаметром 2,4 мм з вищим коефіцієнтом заповнення його оболонки шихтою порівняно із покриттями, сформованими із порошкових дротів діаметром 1,6 мм з нижчим заповненням. Встановлено, що поруватість, та мікротвердість покриттів із розроблених порошкових дротів зростає із збільшенням товщини ламелей в їх структурі та, відповідно, діаметру. Встановлено, шо із збільшенням товщини ламелей у структурі покриттів з порошкових дротів 250Х21ВФГС та порошкових дротів 50ХН2Р5ГС їх адгезія до сталевої основи дещо зменшилася, що зумовлено виникненням в покриттях напружень розтягу, які спричиняють появу мікротріщин або мережі тріщин у їх структурі. Водночас адгезія покриттів із порошкових дротів 50Х6МГ2С до сталі зросла, що зв’язали з більшим вмістом вуглецю у крупних ламелях та сприятливими умовами для формування в них високовуглецевого мартенситу, який має найменший коефіцієнт термічного розширення та спричиняє найменші залишкові напруження розтягу у покриттях. Встановлено, що абразивна та газоабразивна зносостійкість покриттів із ПД 250Х21ВФГС знизилася, а із ПД50ХН2Р5ГС підвищилася внаслідок збільшення товщини ламелей у їх структурі за використання порошкових дротів більшого діаметра. The influence of the diameter of the electrode flux-cored wires on the mechanical characteristics of the electric arc coatings is carried out in the work. Electric arc coatings were obtained on the original equipment, developed and manufactured at the Institute of Physics and Mechanics. GV Karpenko NAS of Ukraine. For spraying, model flux-cored wires of basic doping systems Fe – Cr – C and Fe – Cr – B with a diameter of 1.6 and 2.4 mm were used. The influence of the diameter of flux - cored wires on the structure, electric arc coatings from model flux - cored wires of different diameters is investigated. The dependence of porosity, microhardness, adhesion to the steel base, abrasive wear resistance of electric arc coatings sprayed from flux-cored wires with different amounts of charge on the thickness of the lamellae in the coating structure has been established. The influence of the thickness of the lamellae in the structure of coatings sprayed from flux-cored wires with different amounts of charge (depending on their diameter 1.6 and 2.4 mm) on their abrasive wear resistance was determined. It was found that the thickness of the lamellae in the coatings of all analyzed alloying systems increased with increasing volume of molten metal at the ends of flux-cored wires with the corresponding formation of droplets of larger diameter during its dispersion by air jet. shell charge and high arc current. It is shown that the amount of oxide phase in the structure of coatings doubles with increasing spray distance of flux-cored wires from 80 to 120 mm. More oxide phase (40… 100%) was found in coatings formed of flux-cored wires with a diameter of 2.4 mm with a higher filling factor of its shell charge compared to coatings formed of flux-cored wires with a diameter of 1.6 mm with lower filling. This is due to the larger volume of the charge in the powder wires of larger diameter, the cavities between the powders in which are filled with air, which intensively oxidizes the melt droplets inside the powder wires and at their ends during spraying. It is established that the porosity and microhardness of coatings from the developed flux-cored wires increase with the increase of the thickness of the lamellae in their structure and, accordingly, the diameter of the flux-cored wires. The increase in micro hardness is due to less evaporation and burnout of alloying elements from the droplets forming the coating, and the increase in porosity is caused by intensive spraying of droplets when hitting the sprayed surface, which contributes to micro cavities between the lamellae of the coating. It was found that with increasing the thickness of the lamellae in the structure of coatings of flux-cored wires 250H21VFGS and flux-cored wires 50HN2R5GS their adhesion to the steel base decreased slightly due to the occurrence of tensile stresses in coatings, which cause micro cracks or cracks. At the same time, the adhesion of 50X6MG2C flux-cored wire coatings to steel increased due to the higher carbon content of large lamellae and favorable conditions for the formation of high-carbon martensite, which has the lowest coefficient of thermal expansion and causes the lowest residual tensile stresses. It was found that the abrasive and gas-abrasive wear resistance of coatings from flux-cored wires 250Х21ВФГС decreased, and from flux-cored wires 50ХН2Р5ГС increased due to the increase in the thickness of the lamellae in their structure using a larger diameter. В работе проведено исследование влияния диаметра электродных порошковых проволок на механические характеристики електродугових покрытий. Покрытия получали на оригинальном оборудовании, применяя для напиливания модельные порошковые провода базовых систем легирования Fe–Cr–C и Fe–Cr–B діаметром 1,6 и 2,4 мм. Исследовано влияние диаметра порошковых проволок разного диаметра на структуру електродугових покрытий. Установлена зависимость пористости, микротвердости, адгезии к стальной основе, абразивной износостойкости електродугових покрытий, напыленных из порошковых проводов с разным количеством шихты, от толщины ламелей в структуре покрытий. Определенно влияние толщины ламелей в структуре покрытий, напиленных из порошковых проводов с разным количеством шихты (в зависимости от их диаметра 1,6 и 2,4 мм), на их абразивную износостойкость. Установлено, что толщина ламелей в покрытиях всех проанализированных систем легирования росла с увеличением объема расплавленного металла. Показано, что количество оксидной фазы в структуре покрытий растет вдвое с увеличением дистанции распыливания порошковых проволок от 80 до 120 мм Больше оксидной фазы (на 40-100%) обнаружили в покрытиях, сформированных из порошковых проволок диаметром 2,4 мм с высшим коэффициентом заполнения его оболочки шихтой сравнительно с покрытиями, сформированными из порошковых проводов діаметром 1,6 мм с низшим заполнением. Установлено, что пористость и микротвердость покрытий из разработанных порошковых проволок растет с увеличением толщины ламелей в их структуре и, соответственно, диаметру. Установлено, что с увеличением толщины ламелей в структуре покрытий из порошковых проволок 250Х21ВФГС и порошковых проводов 50ХН2Р5ГС их адгезия к стальной основе несколько уменьшилась, что предопределено возникновением в покрытиях растягивающих напряжений, которые влекут появление микротрещин или сети трещин в их структуре. В то же время адгезия покрытий из порошковых проводов 50Х6МГ2С к стали выросла, что связали с большим содержанием углерода в крупных ламелях и благоприятными условиями для формирования в них высокоуглеродистого мартенсита, который имеет наименьший коэффициент термического расширения и влечет наименьшие остаточные напряжения в покрытиях. Установлено, что абразивная и газоабразивная износостойкость покрытий из ПД 250Х21ВФГС снизилась, а из ПД50ХН2Р5ГС повысилась в результате увеличения толщины ламелей в их структуре за использование порошковых проводов большего диаметра.Item Дослідження впливу технологічних параметрів процесу вакуумного азотування алюмінієвих сплавів на властивості дифузійних іонноазотованих шарів(ЦНТУ, 2019) Рутковський, А. В.; Маркович, С. І.; Михайлюта, С. С.; Рутковский, А. В.; Маркович, С. И.; Rutkovskiy, A.; Markovych, S.; Myhajlyta, S.В роботі проведено дослідження впливу технологічних параметрів процесу вакуумного азотування алюмінієвих сплавів на мікроструктуру, хімічний склад, залишкові напруження, мікротвердість та шорсткість дифузійних іонноазотованих шарів. Наведена методика проведення досліджень. Виявлено утворення рівномірного за товщиною та розподілом легуючих елементів поверхневого шару та утворенню в ньому зміцнювальних фаз на основі АlN, утворюється поверхнева бездефектна структура зі зміненими властивостями, має місце дифузія азоту, що впливає на фазовий склад, і в остаточному підсумку на мікротвердість поверхні. Дослідження мікроструктури показали, що із збільшенням температури азотування збільшується і товщина нітридного шару. Оптимальне значення температури при якому досягається максимальна твердість складає 480°С, найбільші значення мікротвердості спостерігаються при тиску 50 МПа та складу газу 85%Ni2 + 15% Аr. При формуванні теплозахисних дифузійних іонноазотованих шарів в алюмінієвих сплавах виникають напруження стиску. Максимальне значення залишкових напружень σзал=280 МПа спостерігається не на поверхні зразка, а на глибині близько 7 мкм, при цьому зі зростанням тривалості насичення поверхневого шару збільшується значення і залишкових напруг. Проте, таке підвищення проходить в умовах максимальних температур 480 °протягом 180 хв. В работе проведено исследование влияния технологических параметров процесса вакуумного азотирования алюминиевых сплавов на микроструктуру, химический состав, остаточные напряжения, микротвердость и шероховатость диффузионных ионноазотированных слоев. Приведена методика проведения исследований. Обнаружено образование равномерного за толщиной и распределением легирующих элементов поверхностного слоя и образованию в нем укрепляющих фаз на основе АlN, образуется поверхностная бездефектная структура с измененными свойствами, имеет место диффузия азота, который влияет на фазовый состав, и в окончательном итоге на микротвердость поверхности. Исследования микроструктуры показали, что с увеличением температуры азотирования увеличивается и толщина нитридного слоя. Оптимальное значение температуры при котором достигается максимальная твердость составляет 480°С, наибольшие значения микротвердости наблюдаются при давлении 50 МПа и составе газа 85%Ni2 + 15% Аr. При формировании теплозащитных диффузионных ионноазотированных слоев в алюминиевых сплавах возникают напряжения сжатия. Максимальное значение остаточных напряжений σост = 280 МПа наблюдается не на поверхности образца, а на глубине около 7 мкм, при этом с ростом длительности насыщения поверхностного слоя увеличивается значение и остаточных напряжений. Однако, такое повышение проходит в условиях максимальных температур 480 ° на протяжении 180 мин. Growth of operating parameters of combustion engines causes the steady increase of working temperature of structural elements of engine, especially pistons. The perspective for the superficial strengthening of details auto of tractor combustion engines is consider the method of the ionic nitriding. At the same time important is a task of determination of conformities to the law of influence of technological parameters of process on property of the diffusive ion nitrided layers. For the effective analysis of mechanism of the phenomena and technological process control of strengthening of pistons which are made from aluminium alloys, it is necessary to find out intercommunication of factors, which determine motion of process, and their influence on property of the diffusive ion nitrided layers. The presence of this information will allow to promote durability and reliability of both coverages and details with coverages on the stage of their constructing. Research of influence of technological parameters of process of a vacuum nitriding of aluminium alloys is in-process conducted on mikrostructure, chemical composition, remaining tensions, mikrohardness and roughness of the diffusive ion nitrided layers. The method of leadthrough of researches is resulted. Mikro structural researches, namely a presence and distributing of alloying elements is for surfaces, were executed with the use of methods of raster electronic microscopy and x-ray photography mikro to the analysis. The size of remaining tensions was determined on curvature of the treated rectangular standard. Research mikro conducted hardness by a measuring device mikro to hardness of PMT-3, corner between against made 136 degrees the lyings verges of diamond pyramid at loading a 100 gramme. Found out education even after a thickness and distributing of alloying elements of superficial layer and to education in him of strengthening phases on the basis of Aln, a surface structure appears defect-free with the changed properties, diffusion of nitrogen which influences on phase composition takes a place, and in a final result on the microhardness of surface. Researches of microstructure rotined that with the increase of temperature of nitriding was increased thickness of the nitrided layer. The optimum value of temperature at which is arrived at maximal hardness makes 480°С, most values мікро observed hardness at pressure of 50 Mpa and will make gas 85%Ni2 + 15% Ar. At forming of heatcover diffusive іонноазотованих glowed there are tensions of clench in aluminium alloys. The maximal value of remaining tensions of узал=280 Mpa is observed not on-the-spot standard, but on the depth of about 7 мкм, here with growth of duration of satiation of superficial layer increased value and remaining tensions. However, such increase passes in the conditions of maximal temperatures 480 degrees for 180 minutes.Item Дослідження ефективності антикорозійних покриттів конструктивних елементів на основі цинку та алюмінію в хлоридно–сульфідних середовищах(ЦНТУ, 2019) Чумало, Г. В.; Студент, М. М.; Дацко, Б. М.; Гвоздецький, В. М.; Маркович, С. І.; Чумало, Г. В.; Студент, М. М.; Дацко, Б. Н.; Гвоздецкий, В. Н.; Маркович, С. И.; Chumalo, H.; Datsko, B.; Student, M.; Hvozdetskii, V.; Marcovych, S.Для встановлення можливості захисту сталей від сірководневої корозії та корозійного розтріскування досліджено покриття цинкові, нанесені методом гарячого цинкування, металізаційні алюмінієві, нанесені методом електродугового напилення та комбіновані - металізаційні алюмінієві + епоксидне в середовищах різної агресивності. Показано, що нанесення цинкового покриття на сталь 20 підвищує корозійну тривкість в середньому в 1,5 рази у модельній морській воді (ММВ) без сірководню та майже у 2 рази у ММВ, насиченій сірководнем порівняно з такою для сталі 20 без покриття. У середовищі NACE корозійна тривкість зразків з цинковим покриттям різко знижується, що свідчить про недоцільність використання таких покриттів у кислих середовищах. Зразки з алюмінієвими покриттями показали високу корозійну тривкість у ММВ з різним вмістом сірководню та розчині NACE: швидкість корозії сталі з алюмінієвим покриттям знижується в 7,3 рази у ММВ, насиченій сірководнем, та в 1,7 рази у розчині NACE, порівняно зі швидкістю корозії сталі без покриття. Дослідження схильності до корозійного розтріскування показали, що зразки з алюмінієвим покриттям показали вищу опірність до сірководневого корозійного розтріскування ніж зразки без покриття. А зразки з комбінованим покриттям (металізаційне алюмінієве + Jotamastic 87GF) показали кращі захисні властивості, ніж зразки лише з алюмінієвим покриттям. Алюмінієві покриття, нанесені методом електродугового напилення на сталь 20 та комбіновані можна рекомендувати для захисту металевих поверхонь в сірководневих середовищах різної агресивності. Для установления возможности защиты сталей от сероводородной коррозии и коррозионного растрескивания исследованы покрытия цинковые, нанесенные методом горячего цинкования, метализационные алюминиевые, нанесенные методом электродугового напыления и комбинованные - метализационные алюминиевые + эпоксидное в средах различной агрессивности. Показано, что нанесение цинкового покрытия на сталь 20 повышает коррозионную стойкость в среднем в 1,5 раза в модельной морской воде (ММВ) без сероводорода и почти в 2 раза в ММВ, насыщенной сероводородом по сравнению с таковой для стали 20 без покрытия. В среде NACE коррозионная стойкость образцов с цинковым покрытием резко снижается, что свидетельствует о нецелесообразности использования таких покрытий в кислых средах. Образцы с алюминиевыми покрытиями показали высокую коррозионную стойкость в ММВ с различным содержанием сероводорода и растворе NACE: скорость коррозии стали с алюминиевым покрытием снижается в 7,3 раза в ММВ, насыщенной сероводородом и в 1,7 раза в растворе NACE по сравнению со скоростью коррозии стали без покрытия. Исследование склонности к коррозионному растрескивания показали, что образцы с алюминиевым покрытием показали большую сопротивляемость к сероводородному коррозионному растрескиванию чем образцы без покрытия. А образцы с комбинированным покрытием (метализацийне алюминиевое + Jotamastic 87GF) показали лучшие защитные свойства, чем образцы только с алюминиевым покрытием. Алюминиевые покрытия, нанесенные методом электродугового напыления на сталь 20 и комбинированные можно рекомендовать для защиты металлических поверхностей в сероводородных средах различной агрессивности. The aim of the study is to investigate the effectiveness of protective coatings: hot galvanizing, metallization aluminum and combined metal polymer: metallization aluminum with epoxy coating for possible protection against hydrogen sulfide corrosion. To determine the possibility of protection steels from hydrogen sulfide corrosion and corrosion cracking, zinc coatings, applied with hot dip galvanizing, metallized aluminum coatings, applied by electro-arc spraying and combined metallization aluminum + epoxy in media of different aggressiveness were investigated. It is shown that the application of zinc coating on 20 steel increases the corrosion resistance on average in 1.5 times in model sea water (MSW) without hydrogen sulfide and almost in 2 times in the MSW saturated with hydrogen sulfide compared with that for non-coated 20 steel. In the NACE solution, the corrosion resistance of samples with zinc coating is sharply reduced, which indicates the inexpediency of the use of such coatings in acidic environments. Examples of aluminum coatings showed high corrosion resistance in MSW with different content of hydrogen sulfide and in NACE solution: the corrosion rate of steel with aluminum coating is reduced in ~7.3 times in the MSW saturated with hydrogen sulfide and in ~1.7 times in NACE solution compared to the corrosion rate of steel without coating. Investigation of the susceptibility to stress corrosion cracking showed that samples with an aluminum coating showed higher resistance to hydrogen sulfide stress corrosion cracking than samples without coating. And samples with a combined coating (metallic aluminum + Jotamastic 87GF) showed better protective properties than samples with aluminum coating. Aluminum coatings applied by the method of electric arc spraying on 20 steel and combined coatings can be recommended for the protection of metal surfaces in hydrogen sulfide media of different aggressiveness.