Центральноукраїнський науковий вісник. Технічні науки.

Permanent URI for this communityhttps://dspace.kntu.kr.ua/handle/123456789/9042

Ідентифікатор медіа: R30-03350 (рішення Національної ради України від 25.04.2024 р. № 1418). ISSN 2664-262X (p) DOI: 10.32515/2664-262X

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Зносостійкість титанового сплаву ВТ1-0 з модифікованою поверхнею в умовах абразивного впливу
    (ЦНТУ, 2023) Рутковський, А. В.; Маркович, С. І.; Магопець, С. О.; Маркович, В. С.; Rutkovskіy, А.; Markovych, S.; Mahopets, S.; Markovych, V.
    В роботі проведено дослідження зносостійкості титанового сплаву ВТ1-0 з модифікованою поверхнею в умовах абразивного впливу. Для проведення вакуумного іонного азотування в імпульсному режимі і формування дифузійних шарів на поверхні використовувалася універсальна установка «ВІПА1» Технологічні параметри вакуумного іонного азотування в імпульсному режимі: температура – 550°С, тиск – 25-150 Па, час обробки – 10 годин, співвідношення реакційних газів – 80% Аг + 20% N2. Дослідження зносостійкості проводили по схемі зношування вільним абразивом (метод Брінеля) відповідно до ГОСТ 23.208-79 та американського стандарту АСТМ С 6568. Експеримент проводили при швидкості ковзання 0,158 м/с, навантаженні 20 кг (при плечі 272 мм) та шляху тертя 50 м. В якості еталону використовувалась сталь 45, загартована до твердості 480-500 НВ. Тілом для зношування служив диск із титанового сплаву ВТ1-0 діаметром 100 мм і товщиною 3,5 мм. В результаті дослідження встановлено що максимальна інтенсивність зношування титанового сплаву ВТ1-0 без зміцнення; вплив термоциклічного азотування підвищує зносостійкість сплаву ВТ1-0: у піску – 3 рази; у воді + пісок – 3,5 рази; у солі + пісок – 2,5 рази; вплив ізотермічного азотування підвищує зносостійкість сплаву ВТ1-0: у піску – 4 рази; у воді + пісок – 3,5 рази; у солі + пісок – 2,5 рази. The cost of rebuilding machine parts as a result of wear is enormous and rising every year. At a US symposium on reducing wear in machinery, the general consensus was that wear management is central to solving national problems such as energy conservation, material reduction, and ensuring the reliability and safety of mechanical systems. Nitriding significantly increases the wear resistance of metals and alloys. The formation of chemical compounds in titanium alloys by introducing nitrogen or increasing its concentration limit changes the rate of chemical reactions and the kinetics of oxide film growth, and increases their adhesion to the substrate. This leads to a decrease in the intensity of adhesive node formation and improves the tribological characteristics of titanium alloys. Therefore, it is necessary to study a titanium alloy with a hardened nitrided layer to obtain experimental results to determine the regularity of the influence of diffusion saturation parameters on wear resistance under abrasive conditions.
  • Item
    Дослідження впливу температури електроліту при імпульсному анодуванні на властивості поверхневих шарів технічного алюмінію
    (ЦНТУ, 2023) Гвоздецький, В. М.; Маркович, С. І.; Задорожна, Х. Р.; Студент, М. М.; Hvozdetskii, V.; Markovych, S.; Zadorozhna, К.; Student, М.
    Імпульсне анодування формує оксидні шари на алюмінієвих сплавах, що дозволяє отримати поверхневі шари з високою твердістю (до 2000 HV), низьким коефіцієнтом тертя, високою адгезією до металевої основи та низькою екологічною небезпекою. Проведено дослідження впливу температури імпульсного анодування на структуру та зносостійкість анодованих шарів. Встановлено, шо більше молекул води та сірки в анодованому шарі, то менша його мікротвердість та абразивна зносостійкість. Мінімальний знос анодованого шару, а значить найвищу його зносостійкість, зафіксовано для шарів, синтезованих за температури анодування -8ºС, а максимальний знос та найменшу зносостійкість за температури анодування -5ºС. Висока зносостійкість анодованих шарів, синтезованих за температур електроліту від -8 до +10ºС за умов тертя без мащення зумовлена наявністю кристалічної води в анодованому шарі. luminum alloys are characterized by low abrasive wear resistance, which significantly restricts their wide use in technological environments, especially if they contain abrasive particles. The method of pulse anodizing, which consists in periodically changing the current density, allows to improve the hardness and abrasive wear resistance. However, the influence of temperature on these processes has not been sufficiently studied.