Нейромережевий метод виявлення текстурних аномалій у цифровому зображенні
Loading...
Files
Date
2022
Authors
Дрєєв, О. М.
Доренський, О. П.
Дрєєва, Г. М.
Drieiev, О.
Dorenskyi, О.
Drieievа, Н.
Journal Title
Journal ISSN
Volume Title
Publisher
ЦНТУ
Abstract
Сучасні системи комп’ютерного зору часто використовують для оброблення цифрового
зображення нейронні мережі. Однак для цього потрібно створювати бази даних для їх навчання, що в
здебільшого складає переважну долю ресурсів ІТ-проєкту. Тож актуальною задачею, аспекти якої
розглянуто в цій статті, є методи підвищення якості навчання нейронних мереж на даних меншого
обсягу. Також актуальним є й можливість оброблення даних, характер яких не був наявним в початковій
базі прикладів для навчання. Для розв’язання цієї науково-технічної задачі – підвищення якості
сегментації зображення за присутніми текстурними особливостями, – в роботі пропонується
використовувати як вхідну інформацію до нейронної мережі не лише безпосередньо цифрове
зображення, а й його локальні статистичні показники. Означене розширює інформативність вхідної
інформації і нейронній мережі не потрібно вчитися для їх виділення. Для цього достатньо прийняти
рішення щодо їх використання або нехтування як ознаками. Також для виділення текстурних
особливостей запропоновано використовувати самоорганізаційні вихідні шари, які здатні працювати як
класифікатори, що групують елементи за схожими групами ознак. У праці показано застосовність
запропонованих рішень до текстурної сегментації цифрових зображень, зокрема картографічних
фотографічних зображень. Modern computer vision systems often use neural networks to process images. But to use neural
networks, you need to create databases to train these neural networks. In some cases, creating a training database
takes the vast majority of the project's financial and human resources. Therefore, the actual task of finding
methods to improve the quality of learning neural networks on small data is considered in this article. The ability
to process data, which nature was not present in the original training database is relevant, also. To solve the
problem of improving the quality of image segmentation by textural anomalies, this research is proposed to use
as input to the neural network not only the image but also its local statistic data. It can increase the information
content of the input information for the neural network. Therefore, neural networks do not need to learn to
choose statistical features but simply use them.
This investigation classifies the requirements for image segmentation systems to indicate atypical
texture anomalies. The literature analysis revealed various methods and algorithms for solving such problems.
As a result, in this science work, the process of finding features in the photo is summarized in stages. The
division into stages of search for features allowed to choose arguments for methods and algorithms that can
perform the task. At each stage, requirements were formed for methods, that allowed separate the transformation
of image fragments into a vector of features by using an artificial neural network (trained on a separate image of
the autoencoder). Statistical features supplement by the vector of features of the image fragment.
Numerous experiments have shown that the generated feature vectors improve the classification result
for an artificial Kohonen neural network, which is able to detect atypical image fragments.
Description
Keywords
нейронна мережа, цифрове зображення, сегментація, текстура, нейронна мережа Кохонена, image segmentation, neural network, Kohonen, autoencoder, convolution, Kohonen's neural networks
Citation
Дрєєв, О. М. Нейромережевий метод виявлення текстурних аномалій у цифровому зображенні / О. М. Дрєєв, О. П. Доренський, Г. М. Дрєєва // Центральноукраїнський науковий вісник. Технічні науки : зб. наук. пр. – Кропивницький : ЦНТУ, 2022. – Вип. 5(36). – Ч. 2. – С. 335-346.