Економічні науки. Випуск 32. – 2017
Permanent URI for this collection
Browse
Browsing Економічні науки. Випуск 32. – 2017 by Subject "artificial neural networks"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Нейронні штучні мережі як ефективний інструмент адаптивного прогнозування в аграрному секторі економіки(ЦНТУ, 2017) Кернасюк, Ю. В.; Kernasyuk, Y.Стаття присвячена дослідженню можливостей методу штучних нейронних мереж і його практичного застосування при розробці моделі прогнозу розвитку аграрного сектору економіки. Обґрунтовано теоретичний і методичний підхід до побудови моделі прогнозування сільськогосподарського виробництва на основі штучних нейронних мереж. Виявлені за допомогою кореляційного аналізу фактори впливу на виробництво валової продукції сільського господарства. Розроблено модель прогнозу виробництва валової продукції сільського господарства Кіровоградській області на середньостроковий і довгостроковий період. The purpose of the article is to provide scientific and methodological substantiation and development of a model for predicting the development of agricultural production in the Kirovohrad region on the basis of the application of artificial neural networks. The peculiarity of forecasting at the regional level is the need to take into account a significant number of exogenous and endogenous factors of influence. For prediction along with traditional methods of econometric analysis of time series it is expedient to use artificial neural networks. Correlation dependence of factors of development of the agrarian sector of the economy influencing the dynamics of gross agricultural production is determined. The theoretical model of forecasting of gross agricultural production is developed. According to research results, using the method of artificial neural networks and the software product of the analytical platform of the Deductor Academic 5.3.0.88 package, a methodical approach has been developed to construct a forecasting model for gross agricultural production. The essence of the proposed approach is based on a combination of methods of adaptive forecasting and the instrument of artificial neural networks. The methodical approach of adaptive forecasting of gross output of agricultural production is developed. The model of adaptive prediction based on artificial neural networks allows to take into account a significant number of factors of influence and tendencies in the development of ultra-complicated systems, which include agriculture, as well as to provide a lower error margin of forecast.