Кафедра вищої математики та фізики
Permanent URI for this community
Browse
Browsing Кафедра вищої математики та фізики by Subject ""Fast" and "slow" variables"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Quasiperiodic solutions of variational problems of motion in a central force field(1994) Kiforenko, B.; Goncharov, V.; Кіфоренко, Б. М.; Гончаров, В. В.A method is proposed for computing nearly optimal trajectories of dynamic systems with a small parameter by splitting the original variational problem into two separate problems for "fast" and "slow" variables. The problem for "fast" variables is solved by improving the zeroth approximation — the extremals of the linearized problem — by the Ritz method. The solution of the problem for "slow" variables is constructed by passing from a discrete argument — the number of revolutions around the attracting center— to a continuous argument. The proposed method does not require numerical integration of systems of differential equations and produces a highly accurate approximate solution of the problem. Запропоновано метод знаходження майже оптимальних траєкторій динамічних систем з малим параметром шляхом розбиття вихідної варіаційної задачі на дві окремі задачі – для «швидких» та «повільних» змінних. Задача для «швидких» змінних розв’язується шляхом покращення нульового наближення (екстремалей лінеаризованої задачі) – методом Рітца. Розв’язок задача для «повільних» змінних будується шляхом переходу від дискретного аргументу (числа обертів навколо центру тяжіння) до неперервного аргументу. Пропонований метод не вимагає чисельного інтегрування систем диференційних рівнянь і дає досить точні наближення розв’язків задач.