Кафедра деталей машин та прикладної механіки
Permanent URI for this community
Browse
Browsing Кафедра деталей машин та прикладної механіки by Subject "auto-balancer"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Уравновешивание автобалансиром ротора в упруго-вязко закрепленном корпусе с неподвижной точкой(ТПУ, 2014) Филимонихин, Г. Б.; Гончаров, В. В.; Філімоніхін, Г. Б.; Гончаров, В. В.; Filimonikhin, G.; Goncharov, V.Изучается процесс уравновешивания автобалансиром статически неуравновешенного ротора, помещенного с возможностью вращения в тяжелый упруго-вязко закрепленный корпус с неподвижной точкой. Предложенная методика исследований может быть стандартной при решении подобных задач и включает следующие этапы: · составление упрощенных дифференциальных уравнений движения роторной системы, линеаризованных как по введенному малому параметру, так и по отклонениям системы от установившегося движения; · составление замкнутой системы дифференциальных уравнений относительно обобщенных координат, определяющих движение ротора, его дисбаланс; · приведение уравнений к безразмерному виду, их комплексное сворачивание и приведение к стационарному виду; · составление характеристического уравнения и исследование его корней. В результате исследований установлено, что: принципиально возможно уравновесить ротор, только если условный составной ротор (образованный ротором и корпусом) длинный; при этом ротор имеет одну критическую скорость, и автобалансировка наступает при ее превышении; в процессе наступления автобалансировки сначала прекращаются быстрые движения корректирующих грузов относительно ротора, а потом они медленно движутся относительно ротора к автобалансировочному положению. The authors have studied the process of balancing statically unbalanced rotor placed in visco-elastic fixed casing with fixed point by auto-balancer. The proposed research methodology may be standard in solving similar problems and includes the following stages: · derivation of simplified differential equations of motion of rotor’s system linearized by the entered small parameter and by the system deviations from steady motion; · obtaining of closed system of differential equations for generalized coordinates defining rotor motion and its unbalance; · transformation of the equations to the dimensionless form, their complex folding and reduction to stationary form; · obtaining of characteristic equation and studying its roots. The results of the research are: it’s possible to balance rotor only if a conditional composite rotor (formed by rotor and casing) is long; in this case rotor has only one critical speed and auto-balancing occurs on its exceeding; at auto-balancing at first the fast motions of corrective weights stop relative to the rotor and then they move slowly relative to the rotor to auto-balancing positions.Item Уравновешивание автобалансиром ротора в упруго-вязко закрепленном корпусе, совершающем пространственное движение(ТПУ, 2014) Филимонихин, Г. Б.; Гончаров, В. В.; Філімоніхін, Г. Б.; Гончаров, В. В.; Filimonikhin, G.; Goncharov, V.Найдены условия наступления автобалансировки и установлено, что: · корпус и ротор условно образуют составной, более массивный и длинный ротор, характеристики которого влияют на процесс автобалансировки; · переходные процессы, характеризующие автобалансировку, делятся на: быстрые, при которых практически прекращаются движения корригирующих грузов относительно ротора и устанавливается движение ротора, соответствующее суммарному дисбалансу корректирующих грузов и дисбаланса ротора; медленные, при которых корригирующие грузы приходят в автобалансировочное положение, двигаясь относительно ротора; · скорость протекания быстрых переходных процессов зависит от параметров закрепления корпуса, массо-инерционных характеристик составного ротора, скорости вращения, положения плоскости балансировки, сил вязкого сопротивления, действующих на корректирующие грузы, и не зависит от уравновешиваемого дисбаланса, количества и положений корректирующих грузов; · скорость протекания медленных переходных процессов дополнительно зависит от уравновешиваемого дисбаланса, количества и положений корректирующих грузов, но не зависит от сил сопротивления опор. The authors have determined the conditions of auto-balance occurring and have found out that: • bed and rotor form conventionally the composite rotor, more massive and long; its characteristics influence auto-balancing; • transients that characterize auto-balancing are divided into: fast – when corrective weights motion relative to rotor stop and rotor motion corresponding to the total imbalance of corrective weights and rotor imbalance is set; slow – when corrective weights come in auto-balancing position moving relative to rotor; • flow rate of the fast transients depends on bed fixing parameters, inertia characteristics of the composite rotor, rotation speed, balancing plane position, viscous resistance forces influencing the corrective weights; it does not depend on rotor imbalance, quantity and positions of corrective weights; • flow rate of slow transients depends additionally on rotor imbalance, number and positions of corrective weights, but it does not depend on resistance forces of supports.